CH2MHILL. ## Drinking Water Pipeline Condition Assessment: Part 2 PNWS-AWWA Conference – Spokane, WA May 10, 2013 ## Part 1 Recap - 1. Introductions - 2. Benefits - 3. General Condition Assessment Approach - Prioritization Methods - Field Technologies - 4. Rehabilitation Alternatives - 5. Additional Resources ## Quantifying Benefits of Condition Assessment Cost of Failure "Just in Time" Renewal Emergency Repair Planned Rehab Expenditures > Condition Assessment ## Part 1 Recap - 1. Introductions - 2. Market Drivers and Opportunities - 3. Approaches to Condition Assessment - Prioritization Methods - Field Technologies - Rehabilitation Alternatives - 5. Additional Resources ## **Prioritization Methods** - 1. Introductions - 2. Market Drivers and Opportunities - 3. Approaches to Condition Assessment - Prioritization Methods - Field Technologies - 4. Rehabilitation Alternatives - 5. Additional Resources ## Field Technologies - Complex and shifting marketplace - New companies and trade names emerging and evolving - Frequent updates to technologies, or new applications/capabilities of existing technologies ## Phase 1: Technologies - Non-destructive - Non-intrusive - Pipe remains in service - Survey-level information Leak Detection Infrared Acoustic **Emissions** Acoustic Correlator Methods Structural Condition Visual Inspection Soil Survey and Corrosion Analysis Ultrasonic/Pit Depth **Guided Wave** Hydraulic Performance > Pressure and Flow Monitoring ### **Infrared Thermal** - Thermographic Imaging - Provides heat signature images which may indicate leaks in wastewater lines or wastewater effluent discharges - Survey level technology - No excavation/special access needed #### Acoustic Methods: Leak Detection - Acoustic Correlator (Echologics) - Benefits - Locates leaks along the pipe - Pipe remains in service - Works on all pipe sizes/materials - Limitations - · Does not quantify leak rate - Acoustic Microphones - Benefits - Locates leaks along the pipe - Pipe remains in service - Works on all pipe sizes/materials - Limitations - Does not quantify leak rate - · Background noise can interfere ## Acoustic Methods: Wall Thickness - Acoustic Correlator (Echologics) - Benefits - Measures average wall thickness between nodes (stiffness in non-metallic pipes) - Pipe remains in service - Works on all pipe sizes/materials - Limitations - Does not identify discrete defects - Minimum amount of measurements for accurate statistical analysis may vary ## Acoustic Methods (Emission Monitoring) #### Advantages Monitors the acoustic emission when a sudden appearance or propagation of a microscopic crack occurs within a material under load or the break of prestressed wire in PCCP - Can only detect what is happening during monitoring period (no indication about past deterioration) - Installation of sensors may need interruption of service - Quantitative information (e.g., size) about the crack is not available ## Soil Survey / Corrosion Analysis #### Benefits - Rapid, wide deployment - Measures resistivity of soils (corrosion potential) - Survey-level tool - Best used in conjunction with pipe excavation - Does not provide information on full pipe length - Data relevant for metallic pipes/appurtenances only ## Ultrasonic / Pit Depth Measurement #### Benefits - Quantitative measurement - Pipe wall thickness - Pit depth - Simple methods and tools - Exposure of pipe exterior required - Difficult to determine localized metal loss inside pipe with ultrasonic - Most commonly used on metallic pipes #### **Guided Wave** #### Benefits - Screening of long lengths of pipe - 100% of pipe wall is inspected - Detects corrosion in insulated and buried pipes - Variable Range: 1"-60" and 60-1,000LF - Exposure of pipe exterior required - Applies to metallic pipes only ## **Pressure Flow Monitoring** # **Ultrasonic Transit-time** Strap-on ■ Benefits - - No in-line insertion required - Accuracy +/- 2% - Limitations - Average flow rate - Frequently used for treated water applications #### **Electromagnetic Insertion** - Benefits - Accuracy +/- 2% point velocity - Bi-directional flow - Remote data transmission - Limitations - Access to 1" tap/ball valve - Challenging high-pressure insertion - Pipe diameters 8"-78" ## Phase 2: Technologies - Semi-intrusive - Pipe remains in service - Requires instruments be inserted into the pipe, or a portion of the pipe be exposed - Quantitative and detailed information ## Leak Detection Internal Data-Logger Hydrophones Internal Real-Time Hydrophones Internal CCTV # Structural Condition Internal CCTV Electromagneti Magnetic Flux Leakage **Ultrasonic** ## Internal Hydrophones - JD7 "Investigator" / "LDS1000" - Benefits - Locates leaks and gas pockets - Pipe remains in service - Works on all pipe sizes/materials - Limitations - No pipe wall assessment data *Yet* - Pure Sahara - Benefits - Locates leaks and gas pockets - Pipe remains in service - Works on all pipe sizes/materials +6" (2" access) - Measures specific defect location - Limitations - No pipe wall assessment data *Yet* - Deployment distance limited by number of bends in pipe - Tethered system requires numerous access points ## Free-Swimming Internal Hydrophones #### ■ Pure "SmartBall" - Benefits - Locates leaks and gas pockets - Pipe remains in service - Works on all pipe sizes/materials +6" (4" access) - Limitations - Defect location is approximate - No pipe wall assessment data #### ■ JD7 "Bullet" - Benefits - Locates leaks - Pipe remains in service - Works on all pipe sizes/materials - Records visual images - Limitations - Defect location is approximate - No pipe wall assessment data - Tethered system for retrieval ## Free-Swimming Electromagnetic #### ■ PICA SeeSnake (RFT) - Benefits - Measures localized wall thickness - Measures through linings - Free swimming or tethered - Limitations - No leak/gas pocket detection - Large insertion assemblies required for +24" sizes - Extensive cleaning required - Metallic pipe only #### Pure PipeDiver - Benefits - Locates broken prestressed wires - Pipe remains in service - PCCP pipe only, +24" - Limitations - Site specific access requirements - No leak detection *yet* ## **Broadband Electromagnetic** #### External Method - Benefits - Measures localized wall thickness - Pipe may remain in service - Measures through linings/corrosion - Limitations - Ferrous pipe only - Must expose pipe ## Magnetic Flux Leakage (External) #### Advantages - Tools available for small and large diameter pipes - Identifies remaining wall thickness - Identifies size and location of defects (including pits) - Disadvantages - Excavation of buried pipes and replacement of coating or insulation are required - Still emerging as technology for water pipelines ## **Ultrasonic Pig** #### Benefits - Measures localized wall thickness - Free swimming or tethered - No leak/gas pocket detection - Cannot measure through linings - Large insertion assemblies required - Extensive cleaning required - Ferrous pipe only ## Phase 2: Technologies - Fully-intrusive - Pipe must be dewatered - Most specific and detailed information # Structural Condition Internal CCTV Internal Laser Remote Field Eddy Current (RFEC) Broadband Electromagnetic (BEM) Magnetic Flux Leakage (MFL) Acoustic Impact Echo Coupons ## Laser #### Benefits - High-precision scan of pipe interior - Contributes to design for CIPP, sliplining, swagelining, etc. - Limited underwater capabilities - Cannot distinguish scanned materials ## Broadband Electromagnetic #### In-Line - Benefits - Measures localized wall thickness - Measures through linings/corrosion - Limitations - Pipe must be dewatered & cleaned - Time consuming (non-continuous scan) - Unable to detect pin-holes/pits - Large insertion assemblies required - Ferrous pipe only ## Remote Field Eddy Current #### Benefits - Inspect ferrous pipes as well as metallic components of composite pipes - Detect broken wires - Measure corrosion pits - Direct contact with pipe wall not required - Data interpretation needs experience and skill - Some tools require pipe cleaning and/or dewatering before inspection ## Magnetic Flux Leakage #### Advantages - Precise comprehensive inspection - Identifies remaining wall thickness - Identifies size and location of defects (including pits) #### Disadvantages - Pipe must be dewatered, and cleaned (some exceptions) - Still emerging as technology for water pipelines - Ferrous pipes only - High cost # Magnetic Flux Leakage INI Hetch Hetchy Case Study Accuracy ## Coupons #### Benefits - Multiple structural and metallurgic tests may be run on the coupon - Possible to remove coupons from an operational main by using tapping technologies - Provides discrete point information only - Requires large portion of the pipe to be exposed - Often requires main to be taken out of service # Echologics – Case Study Accuracy - 60" Cast Iron Fire Water Pipeline - Combination of acoustic PIT and sample measurements increased statistical confidence | Data Set | Number of
Samples | Average Wall
Thickness | Confidence
Interval | Upper Limit | Lower Limit | |-------------------------------|----------------------|---------------------------|------------------------|-------------|-------------| | Echologics | 14 | 1.44" | 0.161" | 1.60" | 1.28" | | Coupons and
Corrosion Pits | 31 | 1.36" | 0.056" | 1.42" | 1.31" | | Combined Data | 45 | 1.39" | 0.063" | 1.45" | 1.32" | - 1. Introductions - 2. Market Drivers and Opportunities - 3. Approaches to Condition Assessment - Prioritization Methods - Field Technologies - 4. Rehabilitation Alternatives - 5. Additional Resources #### **Rehabilitation Alternatives** - Similar to condition assessment technologies: complex and fastevolving field - Rehab technology selection is increasingly tailored to the condition assessment data collected ## Overview | | Pipe Parameters | | | Work Requirements | | | Features | | | | |--|-------------------|------------------|----------------------------|------------------------|----------------------------------|------------------------------|--|-----------------------------|----------------------------|-----------------------------------| | Method | ID Dia.
Range* | Repair
Length | Working
Pressure
psi | Pit
Excava-
tion | Resin/
Coating**
Cure Time | Annular
Space
Grouting | Excavation
for Service
Reopening | AWWA
Classifi-
cation | Cross
Section
Change | Status of
Technology
(U.S.) | | Level of Cleaning Needed: Very Good | | | | | | | | | | | | Woven PE/epoxy lining | 3-24" | Varies | 150 | S/N | Yes | Adhered | No | II | Minor | Emerging | | | | | | Level of C | leaning Needea | l: Good | | | | | | CIP | 8-96" | <2,500° | 200 | S/N | Yes | No | No | III | Minor | Mature | | Deform-reform, PRP | 3-12" | <1,000° | 230 | S/N | No | No | No | III | Minor | Nove1 | | Deform-reform, PE | 3-48" | <1,000° | 150 | S/N | No | No | No | III | Minor | Mature | | Spraying, cement mortar | 3-24"
and up | <1,000° | NK | S/N | Minimal | No | No | I | Minor | Mature | | Spraying, epoxy | 3-36" | <1,000° | NK | S/N | Yes | No | No | I | Minor | Mature | | Spraying, polyurethane | 3-48" | <1,000° | NK | S/N | Yes | No | NK | II | Minor | Novel | | Spraying, polyurea | 3-36" | <1,000° | NK | S/N | Minima1 | No | NK | IV | Decrease | Nove1 | | Level of Cleaning Needed: General | | | | | | | | | | | | Sliplining | >4" | <5,000° | 360 | L | No | Varies | Yes | III | Decrease | Mature | | Compression-based SR* | 4-20" | <1,000° | New pipe | M/L | No | No | Yes | IV | Minor | Emerging | | Tension-based SR* | 3-36" | <1,000° | New pipe | M/L | No | No | Yes | IV | Minor | Emerging | | Grout-in-place (GIP) | 4-12" | <600° | NK | L | Yes | Integral | No | III | Decrease | Novel | | | | | Level o | of Cleaning N | eeded: None o | r Not Applicab | le | | | | | Pipe bursting, static | 2-36" | 300-
400° | New pipe | L | No | No | Yes | IV | Same/
increase | Mature | | Pipe bursting, pneumatic | 2-36" | 20-500° | New pipe | M | No | No | Yes | IV | Same/
increase | Mature | | Pipe bursting, hydraulic | 2-36" | NK | New pipe | М | No | No | Yes | IV | Same/
increase | Mature | | Pipe extraction | 1-60" | NK | New pipe | M | No | No | Yes | IV | Same/
increase | Rare | | Pipe reaming | 4-24" | 1,600° | New pipe | M | No | No | Yes | IV | Same/
increase | Mature | | Carbon fiber reinforced
pipe (CFRP) | Man
entry | NA | High
pressure | M | Yes | No | Yes | IV | Minor | Emerging | | Spot repair / joint repair | 4-54" | 12-36" | Varies | S/N | Minimal | Adhered or none | N/A | IV | Same/
decrease | Mature | ^{*} SR = Symmetrical Reduction; NK = Not known; S/N = Small or none; M/L = Medium or large; L = Large; AWWA classification of potable water rehabilitation systems I = Nonstructural; II = Semi-structural without inherent ring stiffness (depends on adhesion); III = Semi-structural with inherent ring stiffness (self supports); IV = Structural. ## **Spray Applied Liners** | Principal Advantages | Principal Disadvantages | Features | |---|--|---| | | | | | Semi-structural. No large scale disruption compared to PE slip lining. Excellent abrasion resistance. Long-term corrosion protection material. | Semi-structural Easier leakage detection on metal pipes. Recommended for pipes prone to local damage and well suited for local host pipe damage. | Materials: • Polyeurethane • Polyurea • Epoxy • Polymeric | | Usually bypass service is not required. | | Specifications: NSF/ANSI Standard 6 AWWA M28 Class 3 Rehabilitation technology | ## Pipe Bursting | Principal Advantages | Principal Disadvantages | Features | |---|--|--| | Pipeline Upsize available (2XDia.) New structural pipeline installation Cost-effective where lateral connections are minimal Potential to install from existing manhole structures | Disruptive to adjacent utilities Limited availability of experienced contractors in many geographies Damage to existing service connections Upheave of displaced material possible Entry pit may be required | Materials: • HDPE • Steel • PVC • DIP/Restrained Joint Specifications: AWWA C906 ASTM F714 ASTM C1208 | #### Cured-in-Place Pipe (CIPP) | Principal Advantages | Principal Disadvantages | Features | |---|--|---| | Faster installation than open cut Minor excavation Accommodates bends and minor deformation Maximizes capacity Annulus grouting not required Internal lateral reopening Designed for full structural conditions | Full bypass pumping necessary High setup costs on small projects Does not correct lateral defects or sags Point repairs may be required prior to installation Relies on existing pipe for installation | Materials: • Thermosetting resins and felt • Standard and custom sizing available • Pre-inspection and high-pressure cleaning required • Curing: steam, hot water, UV Specifications: ASTM F1216; D5813; F1743 NASSCO: Yes | # Sliplining | Principal Advantages | Principal Disadvantages | Features | |---|--|---| | Less excavation than open-cut Designed for full structural pipe Extensive history of successful installations | Limitation for grade changes and curved alignments Requires robust excavation pit Removal of structural obstructions and heavy debris Reduction of effective inside pipe diameter Quality control of grout operation | Materials: • HDPE • PVC • GRP Specifications: ASTM D3262; D4161; F1803; D1784; D3212; F477 AWWA M45 | #### Fold & Form | Principal Advantages | Principal Disadvantages | Features | |--|--|--| | Rapid installation Continuous pipes Maximizes capacity No excavation Grouting not required Internal lateral re-connection | Plastic alloy – not full composite pipe HDPE version has thermal expansion considerations Does not correct lateral defects or sags Point repairs required prior to inst Relies on existing pipe for installation support Lateral locations must be located exactly Cannot be used high flow temperatures | Materials PVC HDPE Standards: ASTM F1216; F1504; F1867; F1871 | ### **Spot Repairs** | Principal Advantages | Principal Disadvantages | Features | |---|---|--| | Focused on isolated problems Internal and external solutions are available Minimizes surface disruptions Optimizes rehabilitation construction costs Structural and hydraulic repairs | May require limited excavation for certain types/locations of defects Costly Does not fix entire pipe | Materials: All pipe materials Specifications: ASTM Various AWWA M11 | #### Carbon Fiber Wrap | Principal Advantages | Principal Disadvantages | Features | |--|---|--| | Structural rehabilitation Can increase pipeline strength above original design Corrosion protection Minimal loss of flow capacity | •Limited to sectional repairs as cost can be high •Requires highly trained and experienced technicians •Extensive surface preparation •Best suitable for pipe sections with no fittings. •30 through 201 inches and above •50 psi to 350 psi | Materials: Layers of carbon fibers and glass fibers, epoxy Specifications: ANSI/NSF 61 certified, but no standardized design guides yet | #### **External Reinforcing** | Principal Advantages | Principal Disadvantages | Features | |--|--|-----------------| | Pipe can remain in service Structural repair Straightforward installation technique Long track record | Damaged pipe segment must be exposed Does not address defects in steel cylinder (leaks) Requires additional corrosion protection Isolated repair only | Materials: PCCP | ### Joint Sealing | Principal Advantages | Principal Disadvantages | Features | |---|--|--| | Seals leaking joints and minor cracks or holes Prevents soil loss Low cost due to minimal disruption Can use with all pipe materials Hydraulic only | Some materials easily damaged during installation Plastic pipe requires annular space grouting Does not correct sags Joint problems on curved pipes May require person entry External lateral connection – trenching Point repairs required prior to some installation | Materials: RCP; VCP; PCCP Specifications: ASTM: Various | - 1. Introductions - 2. Market Drivers and Opportunities - 3. Approaches to Condition Assessment - Prioritization Methods - Field Technologies - 4. Rehabilitation Alternatives - 5. Additional Resources #### **Additional Resources** - 2007 WERF Condition Assessment Strategies and Protocols for Water and Wastewater Utility Assets (Appendix F reviews 85 techniques and technologies) - 2009 EPA Condition Assessment of Ferrous Water Transmission & Distribution Systems State of Technology Review Report - 2012 EPA Condition Assessment Technologies for Water Transmission and Distribution Systems - 2013 EPA Field Demonstration of Innovative Condition Assessment Technologies for Water Mains at Louisville, KY - 2009 EPA Rehabilitation of Wastewater Collection and Water Distribution Systems ### Discussion Supplemental Information ## Echologics – Case Study Accuracy - Conoco Phillips 60" Cast Iron Pipe - Surveyed 4300 LF of 1922 era CIP - Divided pipe into 14 discrete segments for analysis - Generally confirmed findings of coupon and pit depth measurements - Some measurements were outside of expected range (high) and source of error not found # Case Study: Homestake System Inspection Pure Technologies *PipeDiver/RFEC* Content from Matt Krumholz/DEN and Liv Haugen/DEN # **Echologics** – Case Study Accuracy ■ Conoco Phillips 60" Cast Iron Pipe - - Combination of acoustic PIT and sample measurements increased statistical confidence ## Smart Ball – Case Study Accuracy - Rock-Tenn 42" RCP Force Main - PURE reports leak location to +/- 5 feet, but no leaks found on this force main - Smart Ball was inserted, traversed 7,900 LF and was recovered - Detected no leakage or trapped gas in pipeline - A robot mounted electromagnetic tool did, however, find defective wires in the dewatered RCP during a plant shutdown #### Risk of Failure #### Consequence of Failure # Schematic for Inspection, Condition Assessment, and Risk Evaluation of Pipes # Phased approach provides step-wise process to make the best decisions about rehabilitation