

Be Flexible

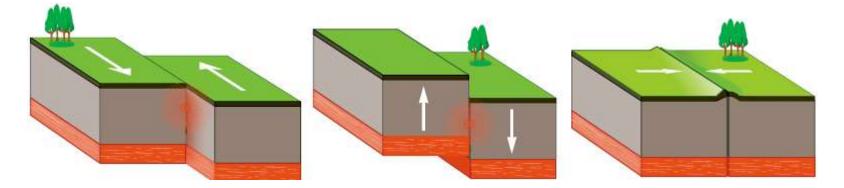
Earthquake Resistant Ductile Iron Pipe Design

April 25, 2018 – Matthew Maring, P.E.

www.jacobs.com | worldwide

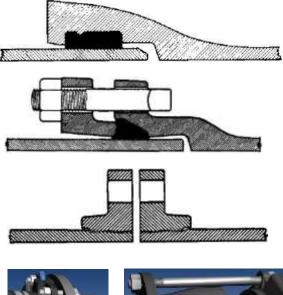
Presentation Overview

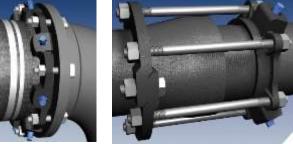
- ERDIP and Applicable Standards
- ERDIP Product Examples
- Joint Type Comparisons
- Seismic Risks and ERDIP Performance
- ERDIP Applications and Design Considerations



ERDIP and Applicable Standards

What is ERDIP?


- Earthquake Resistant Ductile Iron Pipe uses specialized fittings and joints to:
 - Provide increased pipeline / joint flexibility and deflection ranges
 - Reduce risk of pipeline failures due to seismic and other differential displacement inducing events



Ductile Iron Pipe Joint Options

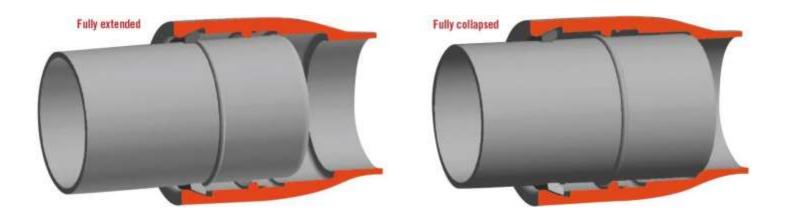
- Unrestrained
 - Push-On Joint, AWWA C111
 - Mechanical Joint (MJ), AWWA C111
- Restrained
 - Flange (FL)*, AWWA
 C110, C111, C115
 - MJ with Wedge Restraint Gland (e.g. Megalug)
 - Shackle rod systems
 - Various proprietary joint systems
- ERDIP
 - Various proprietary joint systems
- * Typically not recommended for buried use except under limited circumstances.

Applicable ERDIP Standards

- Typical AWWA Standards
- JWWA Standards
- International Standard ISO 16134

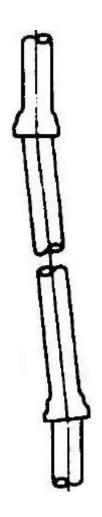
Earthquake- and subsidenceresistant design of ductile iron pipelines, First edition 2006-02-01

INTERNATIONAL STANDARD	ISO 16134	
	First ecition 2005-02-01	
Earthquake- and subsidence design of ductile iron pipelir	e-resistant	
Conception de canalizations en fonte ductile rési de terre et aux affaissements		
150	Reference number (SO 16154-2026(E)	
	@150 2008	


ISO 16134 Classification and Design Parameters

- Expansion and Contraction Range
- Joint Angle Deflection Range
- Joint Strength

ISO 16134 Expansion and Contraction Criteria


- S-1: ±1% of pipe length and above
- S-2: ±0.5% ±1% of pipe length
- S-3: ±0.5% of pipe length and below

ISO 16134 Joint Angle Deflection Criteria

- M-1: ±15° and above
- M-2: ±7.5° ±15°
- M-3: ±7.5° and below
- Push-On Joint Comparison
 - ±5° for 6" 12" pipe
 - ±3° for 16" pipe and above
- Mechanical Joint Comparison
 - ±7° for 6" pipe
 - ±5° for 8" 12" pipe
 - ±3° for 16" 18" pipe
 - ±2° for 24" pipe and above

ISO 16134 Joint Strength Criteria

- A: 8.6 tons per inch diameter and above
- B: 4.3 8.6 tons per inch diameter
- C: 2.1 4.3 tons per inch diameter
- D: 2.1 tons per inch diameter and below
- 250 psi Test Pressure Force Comparison
 - 0.8 tons per inch diameter for 8" pipe
 - 1.2 tons per inch diameter for 12" pipe
 - 1.6 tons per inch diameter for 16" pipe
 - 1.8 tons per inch diameter for 18" pipe
 - 2.4 tons per inch diameter for 24" pipe

ERDIP Products

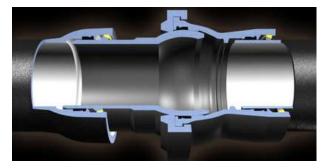
Disclaimers

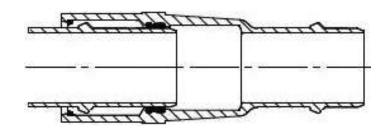
- While this presentation references various product offerings, inclusion/exclusion should not be construed as an endorsement/criticism of any particular products or design approaches
- Product usage and design approaches should be determined on an application specific basis according to:
 - Sound professional and engineering judgement
 - Available standards
 - Identified best practices
 - Other cost, performance, and risk related factors as appropriate

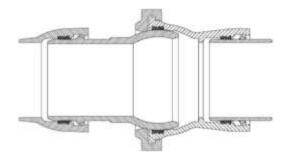
ERDIP Product Examples

- American Pipe
 - Earthquake Joint System
 - Flex-Lok Ball Joint
- Clow
 - Ball and Socket
- EBAA Iron
 - Flex-Tend
 - Ex-Tend
 - Flex Joint

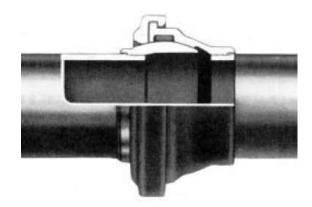
- Kubota
 - NS, S (metric)
 - Genex (metric)
- McWane
 - Seismic Flex Coupling
- U.S. Pipe
 - TR Xtreme
 - Xtra Flex
 - Tele Flex and Telescoping Sleeves

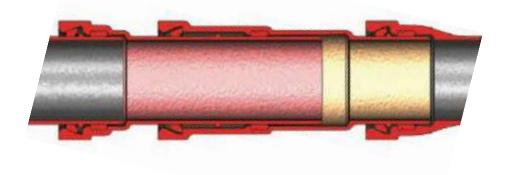



American Pipe


• Earthquake Joint System

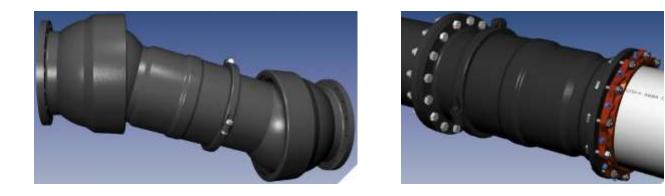
• Flex-Lok Ball Joint

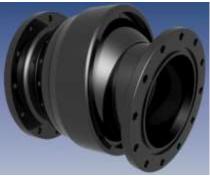




Clow and McWane

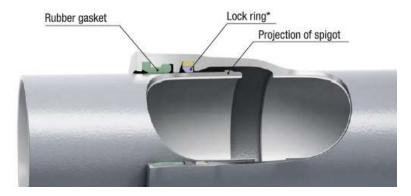
Clow Ball and Socket

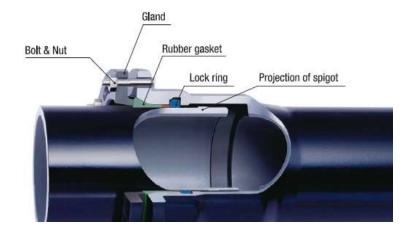

McWane Seismic Flex Coupling



EBAA Iron

• Flex-Tend, Ex-Tend, and Flex Joint Series

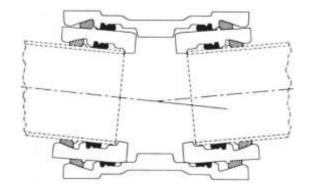




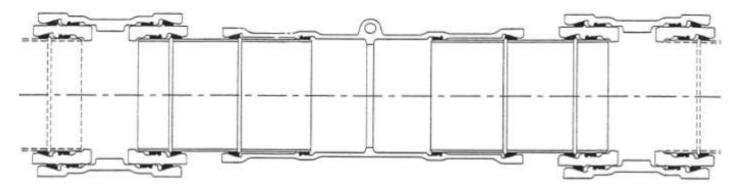
Kubota

• Genex (metric)

• NS and S (metric)



U.S. Pipe


• TR Xtreme

• Xtra Flex

• Tele Flex and Telescoping Sleeves

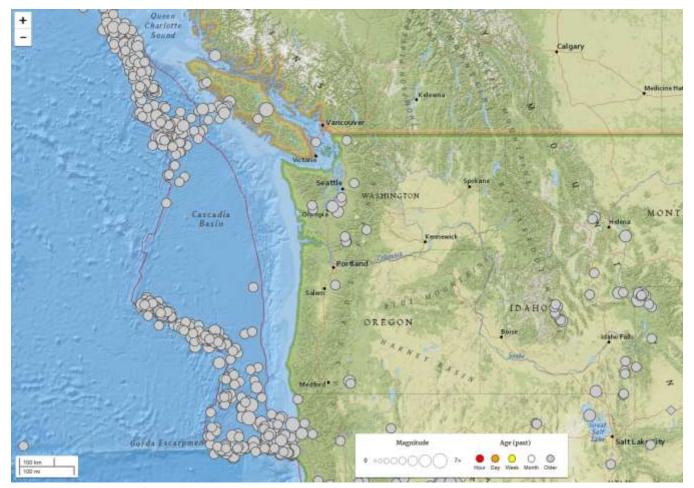
Joint Type Comparisons

Joint Type Characteristics

Joint Type	Ease of Assembly	Deflection Flexibility	Expansion and Contraction Flexibility	Restraint
Push-On Joint	High	Moderate	Limited	None
Mechanical Joint (MJ)	Moderate	Moderate	Limited	None
Flange (FL)*	Moderate	None	None	Yes
MJ with Wedge Restraint Gland (WRG)	Moderate	None	None	Yes
Shackle Rod Systems	Low	Moderate	Limited	Yes
Restrained Joint (RJ, proprietary)	High	Moderate	Limited	Yes
ERDIP (proprietary)	Moderate	High	High	Yes

* Typically not recommended for buried use except under limited circumstances.

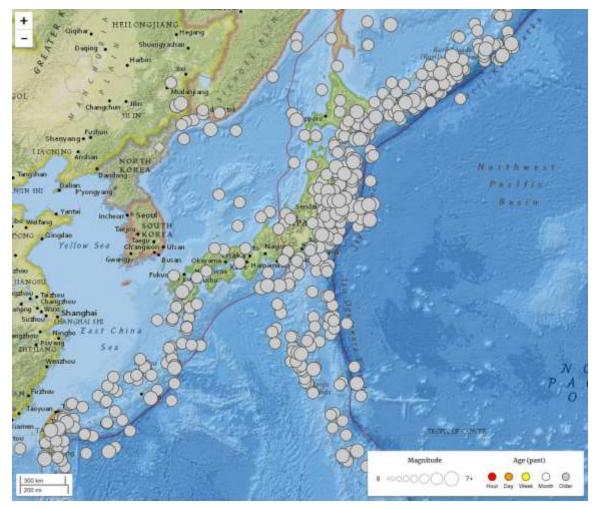
Seismic Risks and ERDIP Performance


Pacific Northwest Faults

Pacific Northwest Seismic History

• Magnitude 5+ Earthquakes, USGS Records 1900 – present

ERDIP in Japan


- Usage steadily increasing in Japan since initial development of ERDIP products by Kubota in mid 1970s
- Kubota has documented no failures of ERDIP due to seismic events in Japan, including the:
 - 1995 Kobe / Great Hanshin 6.9 earthquake
 - 2011 Pacific Coast / Tōhoku 9.1 earthquake / tsunami

ERDIP Era Japanese Seismic History

• Magnitude 6+ Earthquakes, USGS Records 1985 – present

ERDIP Applications and Design Considerations

Applications

- Seismically Active Areas
- Fault Crossings
- Unstable Slopes and Landslide Areas
- Liquefaction Zones
- Subsidence Zones
- Differential Settlement Areas and Connections to Structures
- Erosion and Undercutting Prone Areas

Design Considerations

- Seismic and Geotechnical Analysis
 - Peak Ground Displacement (PGD)
 - Peak Ground Velocity (PGV)
 - Peak Ground Acceleration (PGA)
 - Seismic wavelengths
 - Fault proximity and rupture risks
 - Subsurface layer characteristics and natural frequency/period
 - Saturation and liquefaction risk
 - Strain and subsidence rates
 - Slide movement and creep rates
 - Differential settlement
 - Erosion rates and risk

- Pipe Design and Installation
 - ISO design and pipe parameters
 - Joint types and locations
 - Expansion / contraction presets
 - Deflection presets
 - Isolation valve locations and looping
 - Thrust / pressure restraint, connection to unrestrained piping
 - System weight and buoyancy
 - Polyethylene encasement
 - Field cuts and closures
 - Installation procedures and pressure testing requirements

ISO 16134 Design Process and Calculations

- Evaluate seismic motion potential
- Characterize subsurface and soil parameters
- Estimate displacement and liquefaction potential
- Develop ERDIP conceptual design parameters and evaluate relative to:
 - Pipe body and joint stress
 - Joint expansion / contraction
 - Joint deflection

- ISO 16134 standard content:
 - Pipeline seismic hazard descriptions
 - Qualitative design considerations
 - Design procedure
 - Design parameters and equations (metric)
 - Reference tables and values (metric)
 - Detailed calculation examples (metric)

North American ERDIP Pilots, Projects, and Context

- Los Angeles
- San Francisco
- East Bay Municipal Utility District
- Menlo Park
- Palo Alto
- San Jose
- Eugene
- Portland
- Joint Water Commission
- Seattle
- Kent
- Vancouver BC

Pacific Magnitude 6.5+ Earthquakes
 USGS Records 1900 – present

References and Acknowledgements

- Information for this presentation is sourced from the following manufacturers and organizations:
 - American Water Works Association
 - American Pipe
 - Clow and McWane
 - Ductile Iron Pipe Research Association
 - EBAA Iron
 - International Standards Organization
 - Kubota
 - Pacific Northwest Seismic Network
 - USGS
 - U.S. Pipe

Questions and Discussion

Be Flexible

Earthquake Resistant Ductile Iron Pipe Design

www.jacobs.com | worldwide

© Copyright Jacobs April 26, 2018