# Willamette Water Supply Our Reliable Water



2018 TACOMA PNWS-AWWA

# Seismic Resiliency Lessons Learned Along the Way

April 25, 2018

# Outline

- Introduction & Program Overview
- Approach to Seismic Resiliency
- Types of Seismic Hazards
- Design of Resilient Facilities
- Application of Program Seismic Guidelines & Minimum Design Requirements

## INTRODUCTION & PROGRAM OVERVIEW

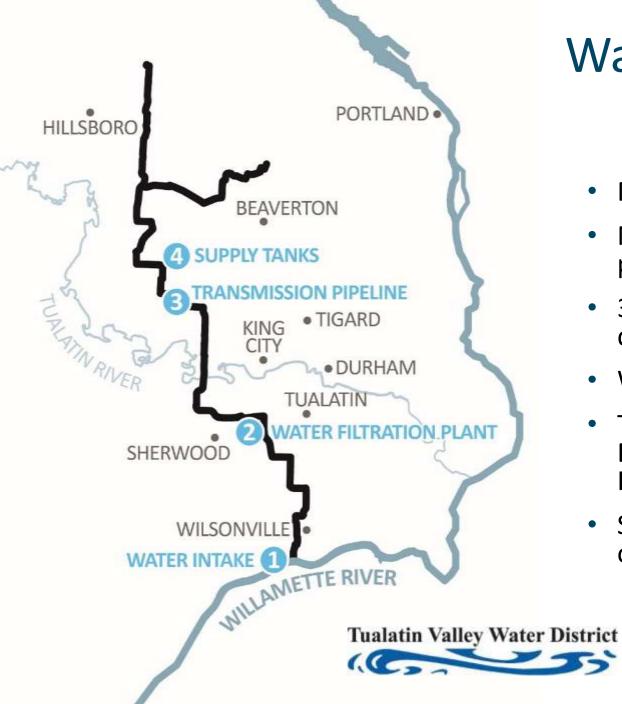


# Water System Failures Can Be Dramatic & Have Large Regional Impacts












# Seismic Hazards are One of the Greatest Risks to Water Systems in our Region

- For the last 25 years, scientists have been aware of the possibility that a great earthquake caused by the Cascadia Subduction Zone could strike the Pacific Northwest in the next 50 years
- Great Subduction Zone Earthquakes are the largest earthquakes in the world and can produce magnitude
   9.0 or greater earthquakes





# Water Supply Program

- Modified water intake
- New water filtration plant
- 30+ miles of large diameter pipeline
- Water reservoirs
- Tualatin Valley Water District: 60% City of Hillsboro: 40%

illsboro

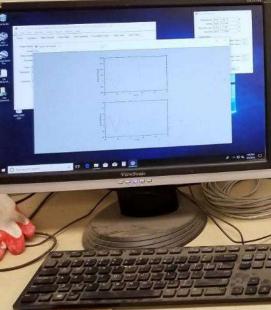
 Scheduled completion: 2026

# Willamette Water Supply Program Mission Statement

**Provide a cost-effective, reliable and resilient water supply system** by July 2026, that benefits current and future generations of the communities we serve and supports a vibrant local economy.

ette Water Supply




#### **APPROACH TO SEISMIC RESILIENCY**

# Approach to Achieving Seismic Resiliency Goals

In designing the system, our team uses:

- ✓ Diverse critical thinking
- ✓ The latest seismic data

# Cyclic Soil Shear Testing



ShearTrac-II

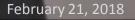
Vertical

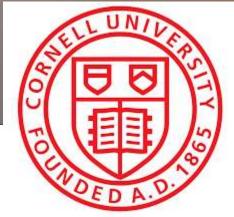
0000

Horizontal



# Approach to Achieving Seismic Resiliency Goals


In designing the system, our team uses:


- ✓ Diverse critical thinking
- ✓ The latest seismic data
- Leveraging expertise from other critical infrastructure systems
- ✓ Input from industry experts

This approach is tailored to each system component to balance water supply resiliency and cost

### Dr. O'Rourke Interview

# 01:28:27:11





# Seismic Guidelines and Minimum Design Requirements

#### **History of Development**

- Seismic Resiliency Workgroup Meeting #1 10/7/16: Overview of program and LOS goals
- Seismic Resiliency Workgroup Meeting #2 3/16/17: Overall approach & seismic framework
- Seismic Resiliency Workgroup Meeting #3 9/20/17: Reviewed draft standards [released Seismic Guidelines and Minimum Design Standards (version 0.0) 10/31/17]
- Seismic Resiliency Workgroup Meeting #4 3/15/18: Reviewed updates and new sections on Facilities and Peer Review
- Seismic Resiliency Workgroup Meeting #5 TBD: Focus updates related to pipelines and facilities and new sections pertaining to Operational Considerations and Resiliency Planning
- Seismic Resiliency Workgroup Meeting #6 TBD: Intended to include any additional updates plus other topics not yet addressed



#### **TYPES OF SEISMIC HAZARDS**

#### **Evaluate Project Specific Hazards**

#### Table 6-1. Types of Seismic Hazards

|                                                              | 1                                 |                 |  |
|--------------------------------------------------------------|-----------------------------------|-----------------|--|
| Hazard                                                       | Subcategory/Description           |                 |  |
| Category                                                     |                                   |                 |  |
| A. Ground                                                    | Transient ground motions and      |                 |  |
| Shaking                                                      | ground strain                     |                 |  |
|                                                              | (Section 6.3)                     |                 |  |
| B. Permanent                                                 | 1. Liquefaction a. Settlement     |                 |  |
| Ground                                                       | (Section 6.4) (Section 6.6)       |                 |  |
| Deformation                                                  | <b>b.</b> Lateral                 |                 |  |
|                                                              | Spreading                         |                 |  |
|                                                              | (Section 6.7)                     |                 |  |
|                                                              | 2. Soft or weak soils below       |                 |  |
|                                                              | infrastructure (Section 6.8)      |                 |  |
|                                                              | 3. Seismically induced landslides |                 |  |
|                                                              | (Section 6.9)                     |                 |  |
|                                                              | 4. Abrupt a. Differentia          |                 |  |
|                                                              | Offsets                           | Movement        |  |
|                                                              | (Section 6.10)                    | <b>b.</b> Soil  |  |
|                                                              |                                   | Transitions     |  |
|                                                              |                                   | <b>c.</b> Fault |  |
|                                                              |                                   | Ruptures        |  |
| <b>C.</b> Nearby infrastructure by others designed to lesser |                                   |                 |  |

**C.** Nearby infrastructure by others designed to lesser standards (Section 6.11)

D. Other applicable hazards (Section 6.12)

*Ground Shaking*. Ground shaking represents transient ground motions that are propagated through the ground due to the seismic fault movement. This hazard includes loading on the infrastructure that only exists while the ground shaking is ongoing. Once the ground shaking stops, the transient loading imposed on the infrastructure subsides.

#### **Evaluate Project Specific Hazards**

#### Table 6-1. Types of Seismic Hazards

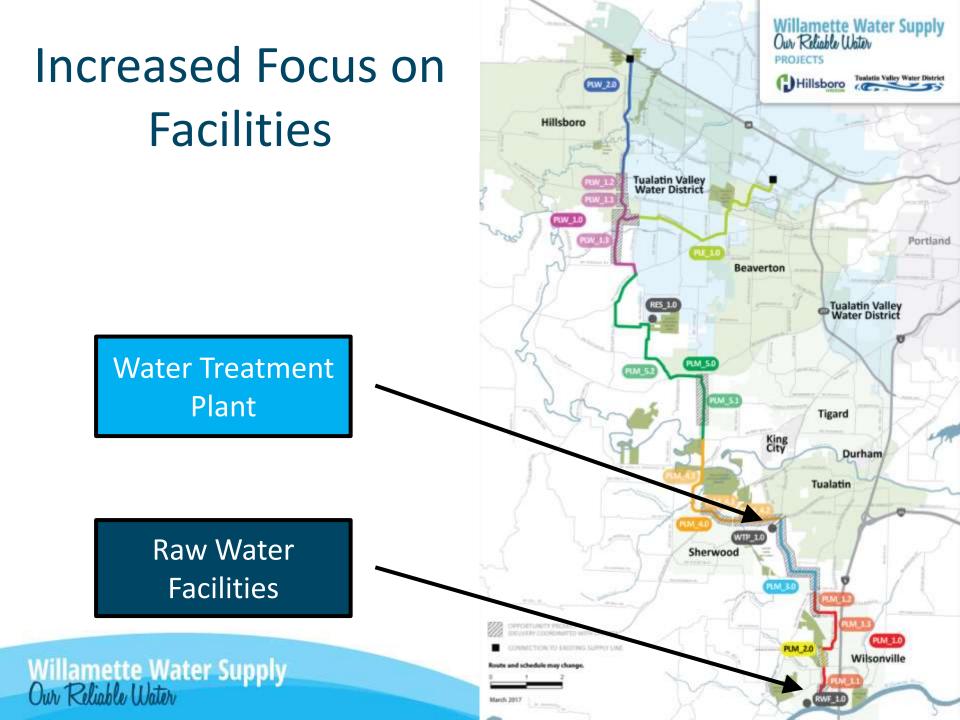
| Hazard                                                       | Subcategory/Description                 |                 |  |
|--------------------------------------------------------------|-----------------------------------------|-----------------|--|
| Category                                                     |                                         |                 |  |
| A. Ground                                                    | Transient ground                        | motions and     |  |
| Shaking                                                      | ground strain                           |                 |  |
|                                                              | (Section 6.3)                           |                 |  |
| B. Permanent                                                 | 1. Liquefaction                         | a. Settlement   |  |
| Ground                                                       | (Section 6.4) (Section 6.6)             |                 |  |
| Deformation                                                  | <b>b.</b> Lateral                       |                 |  |
|                                                              | Spreading                               |                 |  |
|                                                              | (Section 6.7)                           |                 |  |
|                                                              | 2. Soft or weak soils below             |                 |  |
|                                                              | infrastructure (Section 6.8)            |                 |  |
|                                                              | 3. Seismically induced landslides       |                 |  |
|                                                              | (Section 6.9)                           |                 |  |
|                                                              | <b>4.</b> Abrupt <b>a.</b> Differential |                 |  |
|                                                              | Offsets                                 | Movement        |  |
|                                                              | (Section 6.10)                          | <b>b.</b> Soil  |  |
|                                                              |                                         | Transitions     |  |
|                                                              |                                         | <b>c.</b> Fault |  |
|                                                              |                                         | Ruptures        |  |
| <b>C.</b> Nearby infrastructure by others designed to lesser |                                         |                 |  |

**C.** Nearby infrastructure by others designed to lesser standards (Section 6.11)

D. Other applicable hazards (Section 6.12)

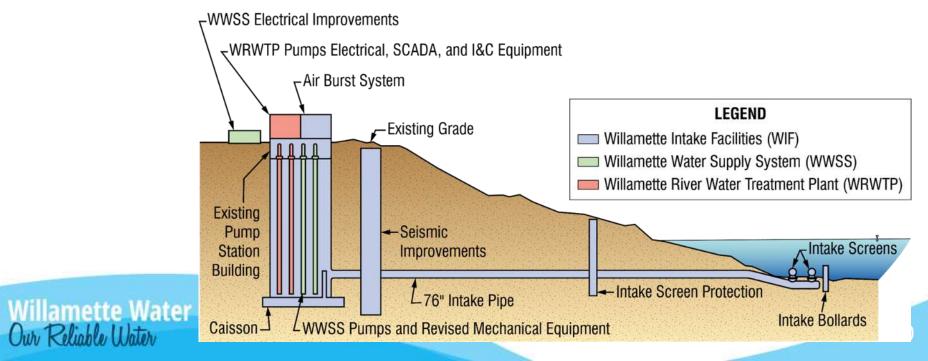
Permanent Ground Deformation. Permanent ground deformation (PGD) represents permanent movements that can impose loading on infrastructure. The movement and loading from the different subcategories of hazards remain following the end of the transient ground shaking from seismic waves. PGD is the "irrecoverable movement that persists after the shaking has stopped" (O'Rourke et. al., 2015). The different types of PGD may act separately or in combination depending on the specific characteristics of the hazard area under investigation.

#### **Evaluate Project Specific Hazards**

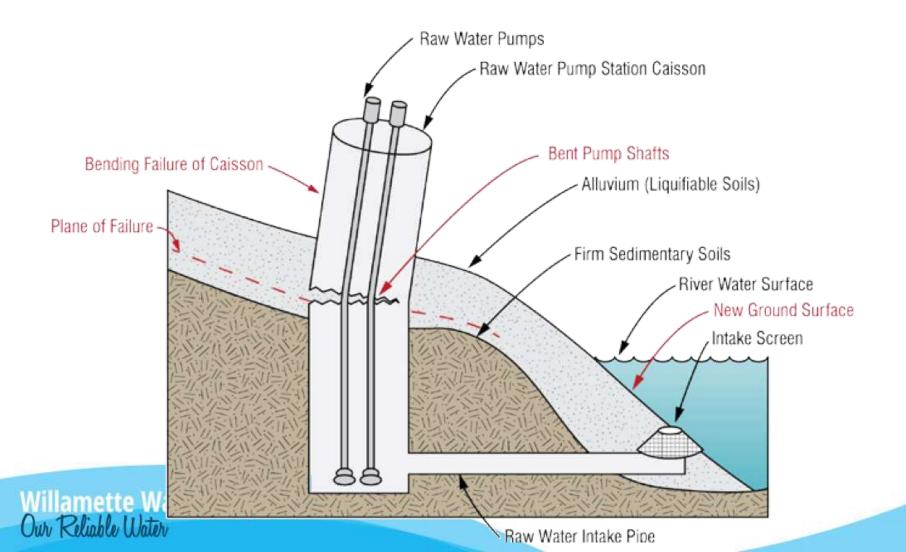

#### Table 6-1. Types of Seismic Hazards

| Hazard                                                       | Subcategory/Description           |                 |  |
|--------------------------------------------------------------|-----------------------------------|-----------------|--|
| Category                                                     |                                   |                 |  |
| A. Ground                                                    | Transient ground motions and      |                 |  |
| Shaking                                                      | ground strain                     |                 |  |
|                                                              | (Section 6.3)                     |                 |  |
| B. Permanent                                                 | 1. Liquefaction                   | a. Settlement   |  |
| Ground                                                       | (Section 6.4) (Section 6.6)       |                 |  |
| Deformation                                                  | <b>b.</b> Lateral                 |                 |  |
|                                                              | Spreading                         |                 |  |
|                                                              | (Section 6.7)                     |                 |  |
|                                                              | 2. Soft or weak soils below       |                 |  |
|                                                              | infrastructure (Section 6.8)      |                 |  |
|                                                              | 3. Seismically induced landslides |                 |  |
|                                                              | (Section 6.9)                     |                 |  |
|                                                              | 4. Abrupt                         | a. Differential |  |
|                                                              | Offsets                           | Movement        |  |
|                                                              | (Section 6.10)                    | <b>b.</b> Soil  |  |
|                                                              |                                   | Transitions     |  |
|                                                              |                                   | <b>c.</b> Fault |  |
|                                                              |                                   | Ruptures        |  |
| <b>C.</b> Nearby infrastructure by others designed to lesser |                                   |                 |  |

**C.** Nearby infrastructure by others designed to lesser standards (Section 6.11)


D. Other applicable hazards (Section 6.12)

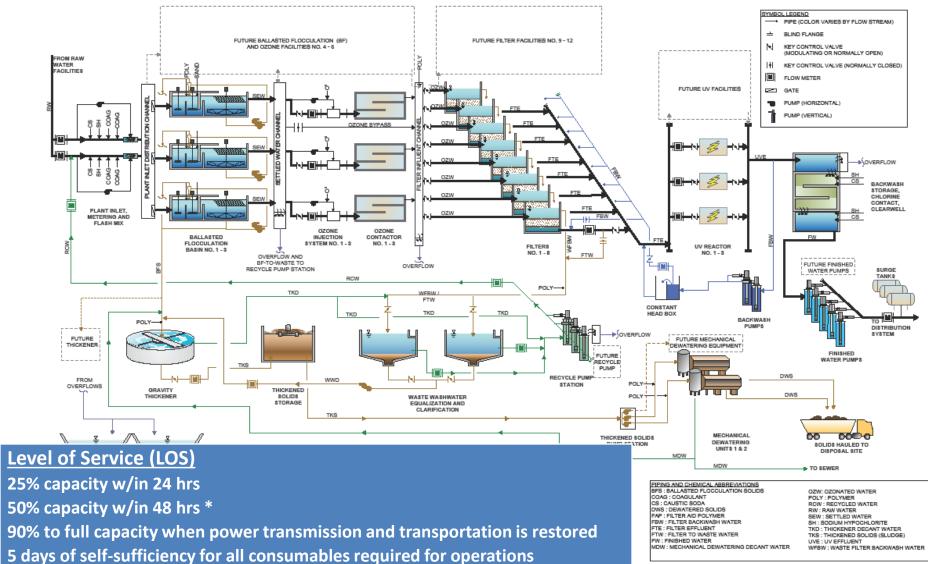
#### **DESIGN OF RESILIENT FACILITIES**




## **Raw Water Facilities**






# Addressing Existing Caisson Vulnerability



# Conceptual Water Treatment Plant Layout



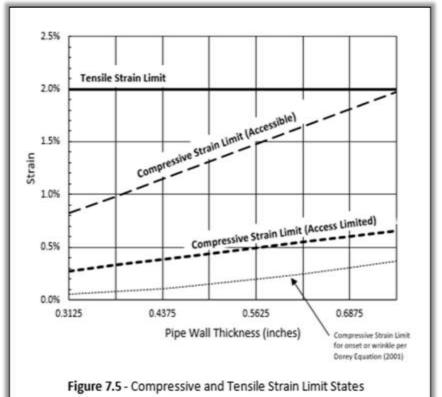
## New Seismic Guidelines for Facilities



- 5 days of sen-sufficiency for an consumables required for oper
- \* Provide full treatment at 50% capacity

## APPLICATION OF PROGRAM SEISMIC GUIDELINES & MINIMUM DESIGN REQUIREMENTS

# Strain-Based Design & Limit States for Welded Steel Pipe


Four (4) limit states pertain to the design of continuous welded steel pipelines (Karamanos, et. al, 2017)

- Tensile Strain Capacity
- Local Buckling
- Beam Buckling
- Joint Resistance

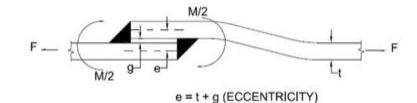
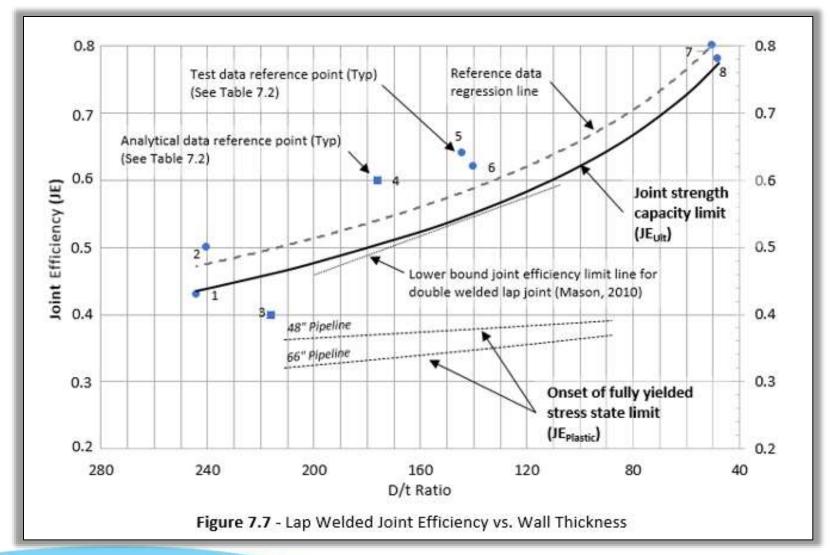
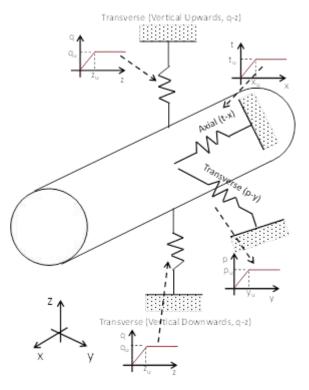

amette Water Supply

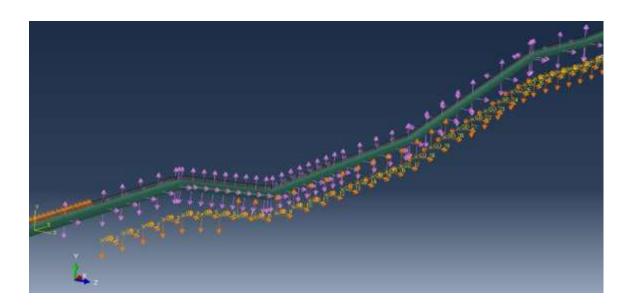


Figure 4.2 Tear at Wrinkle in Ciudad Nezahualcoyotl Pipeline (Mexico City, 1985)



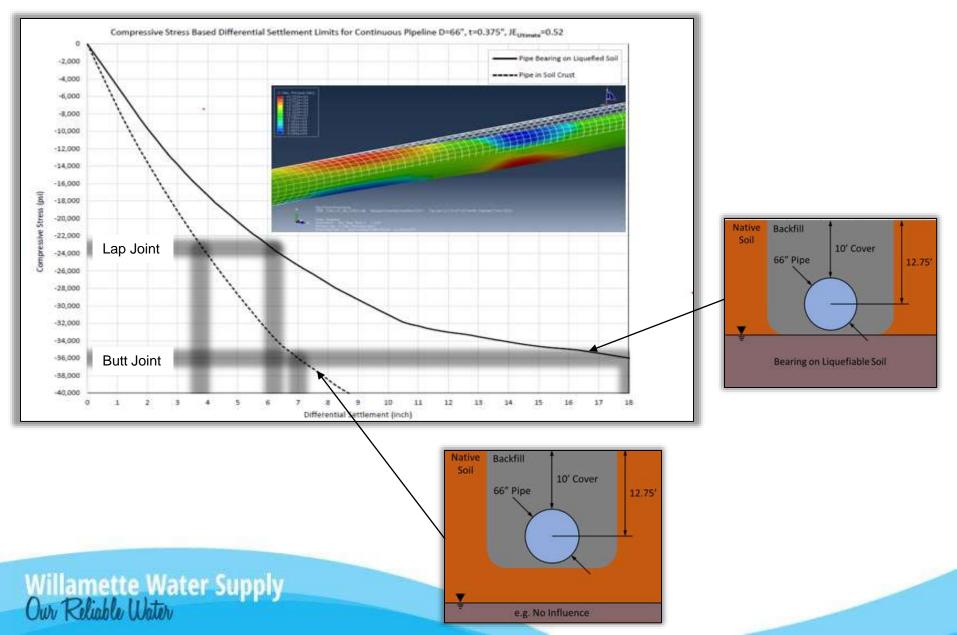

#### Strength of Lap Welded Joints





| Table 7-2. Summary of Analytical and Large Testing Results on Axial Strength of Lap Welded Joints |                             |     |                                                                                                                                                           |  |
|---------------------------------------------------------------------------------------------------|-----------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Study or<br>Reference                                                                             | Joint<br>Efficiency<br>(JE) | D/t | Comments                                                                                                                                                  |  |
| Moncarz et. al<br>(1987) [Ref. 3 in<br>Figure 7.9]                                                | 0.4                         | 216 | Analytical evaluation of the failure of a 108-inch<br>pipe subject to axial compression. Hoop stress<br>was at 55% of yield.                              |  |
| Eidinger (1999)<br>[Ref. 4 in Figure<br>7.9]                                                      | 0.6                         | 176 | Analytical evaluation of un-pressurized 66-inch<br>pipe with double welded lap joints and subject to<br>axial compression.                                |  |
| Mason et. al                                                                                      | 0.78 to 0.81                | 48  | Experimental and analytical evaluation of                                                                                                                 |  |
| (2010) [Ref. 1, 5,                                                                                | 0.64 to 0.66                | 144 | unpressurized 12 to 36-inch pipe with single and                                                                                                          |  |
| and 8 in Figure                                                                                   | 0.43                        | 244 | double welded lap joints subject to axial                                                                                                                 |  |
| 7.9]                                                                                              |                             |     | compression. Wrinkling occurred in the curved<br>portion of the bell.                                                                                     |  |
| Jones, T.<br>O'Rourke, and J                                                                      |                             |     | Experimental and analytical evaluation of<br>unpressurized pipe with single welded lap joints                                                             |  |
| Mason (2012)<br>[Ref.s 2, 6, and 7<br>in Figure 7.9]                                              | 0.50 to 0.65                | 50  | subject to axial compression. Reductions in the<br>axial compressive capacity of pipelines with welded<br>slip joints that can be as large as 50 percent. |  |

#### Strength of Lap Welded Joints




#### Soil/Pipe Interaction Modeling



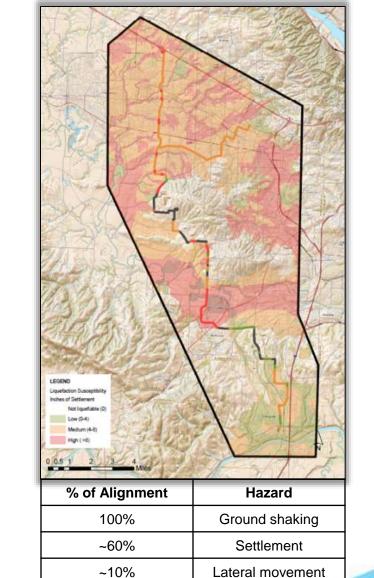


 Adjustments to soil springs based on installation depth, pipe backfill, and groundwater level may be warranted to suit specific site conditions.

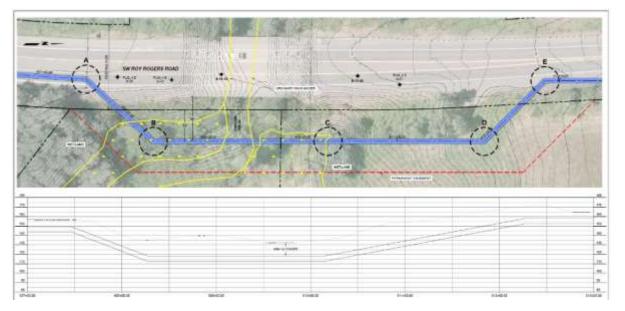
#### **Settlement Threshold Analysis**

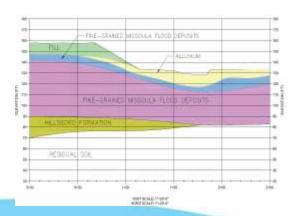


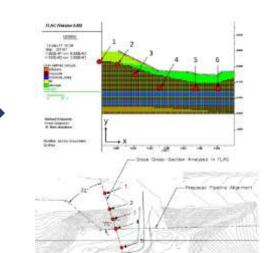
#### **Settlement Threshold Analysis**


Provides design guidance on where the use of lap welded and butt welded joints is appropriate based on anticipated vertical differential ground settlement

| Pipe Wall Thickness<br>(in) |        | Bearing in Liquefiable<br>Soil |                              | Bearing in Soil Crust |                              |
|-----------------------------|--------|--------------------------------|------------------------------|-----------------------|------------------------------|
|                             |        | Lap Joint<br>(in)              | Butt<br>Welded<br>Joint (in) | Lap Joint<br>(in)     | Butt<br>Welded<br>Joint (in) |
| 5/16                        | 0.3125 | 5                              | 15                           | 3                     | 6.5                          |
| 3/8                         | 0.3750 | 6                              | 18                           | 4                     | 7                            |
| 1/2                         | 0.5000 | 9                              | 20                           | 5                     | 8.5                          |
| 5/8                         | 0.6250 | 12                             | 20                           | 6.5                   | 9.5                          |
| 3/4                         | 0.7500 | 17                             | 20                           | 8                     | 10.5                         |

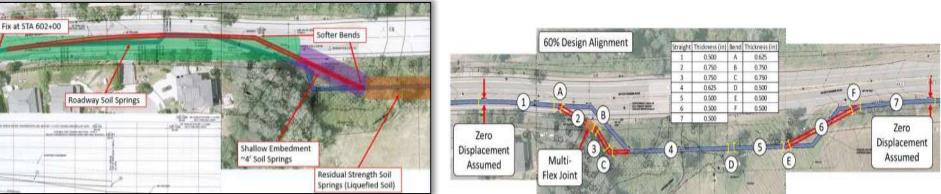

Allowable Differential Settlement Thresholds for 66-inch Diameter Pipe\*


\* These values are specific to WWSP soils and site conditions. Allowable differential settlement values will vary depending on soils present, corresponding response to settlement, and other considerations.

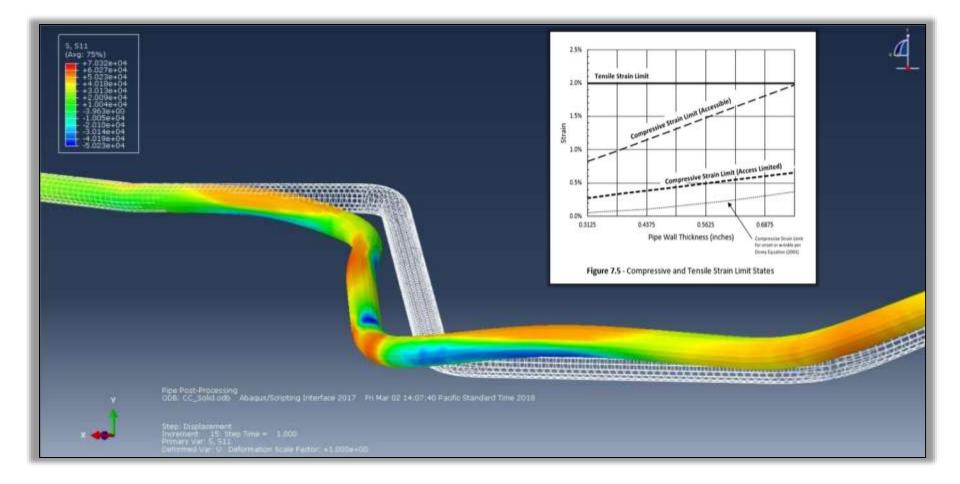

amette Water Supply



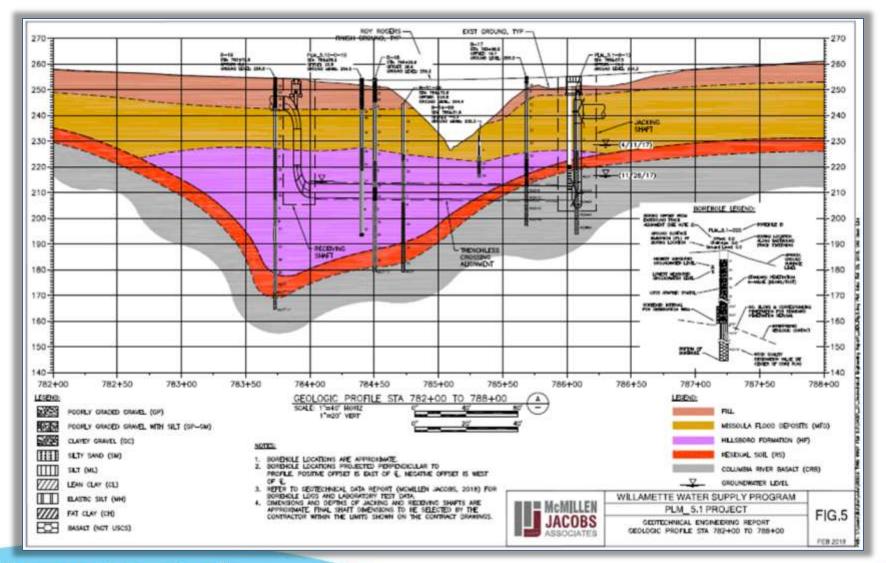
# Lateral Spreading Analysis – Ground Deformations



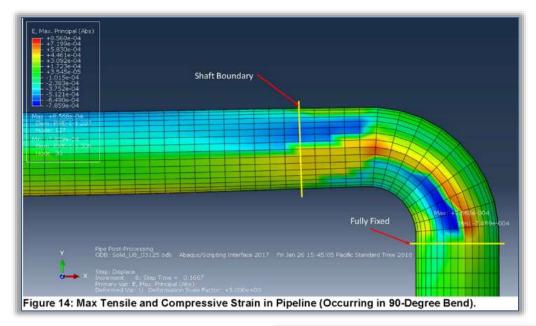


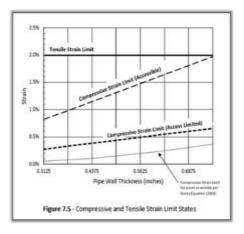




#### Lateral Spreading Analysis – Pipe Model







#### Lateral Spreading Analysis – Pipe Design




#### Abrupt Offset



#### **Abrupt Offset Analysis**





- Max Compressive Strain: 0.28%
- Max Tensile Strain: 0.24%

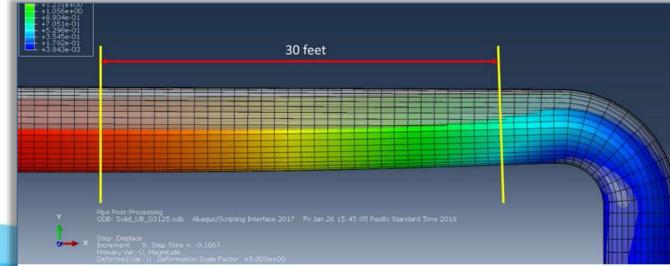
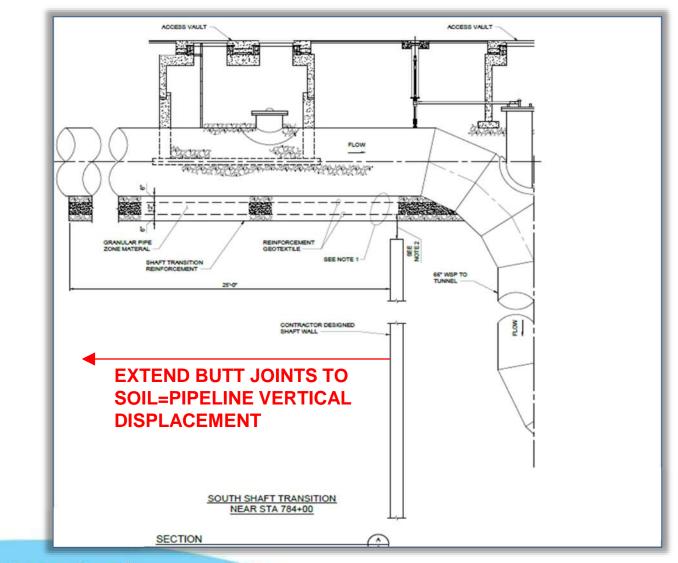






Figure 13: Distance Beyond Receiving Shaft Wall Until Pipeline Displacement Matches Vertical Soil Settlement

#### Abrupt Offset Design Mitigation



# Thank you!

Mike Britch, PE, MPA Engineering & Construction Manager Willamette Water Supply Program mike.britch@tvwd.org 503-941-4565



2018 TACOMA PNWS-AWWA

Mark Havekost, PE Principal Engineer McMillen Jacobs Associates havekost@mcmjac.com 503-384-2909

info@ourreliablewater.org www.ourreliablewater.org



You Tube