

City of Lake Oswego

Water Master Plan Update

April 25 | 2018

Agenda

- Project Overview
- Lake Oswego Water System Overview
- Seismic Resiliency Process
- Hydraulic Modeling Process
- Comprehensive CIP Development

Project Overview

- Project Drivers
 - Last master plan in 2001
 - Completion of the Lake Oswego Tigard Water Program
 - Increased population

- Project Goals
 - Address Oregon Resilience Plan (ORP) seismic goals
 - Assess alternative sources of emergency supply
 - Optimize existing system operations

System Overview

System Overview

Brown and Caldwell

Seismic Resiliency

New Oregon Health Authority (OHA) requirement:

A seismic risk assessment and mitigation plan for water systems located in areas identified <u>moderate</u> to <u>very high</u> damage potential

Magnitude 9 Cascadia Earthquake

OHA: Map of Earthquake and **Tsunami Damage Potential**

Modified Mercalli Intensity Scale / Damage Potential

Felt indoors by many None IV Very Light v Felt outdoors Felt by all; windows crack Light VI Difficult to stand; damage to poorly Moderate VII built masonry buildings Moderate/ Steering of cars affected; extensive VIII Heavy damage to unreinforced masonry General panic; serious damage to Heavy X collapse of unreinforced masonry Bridges and well-build wooden Ж Very Heavy structures heavily damaged

OHA Requirements

- Identify critical facilities
- Identify and evaluate the likelihood and consequence of seismic failures
- Include recommendations to minimize water loss, capital improvements or recommendations for further study or analysis

Seismic Resiliency Process

System Backbone

- Start with DOGAMI seismic hazard maps
- Review geotechnical reports and boring logs
- Site reconnaissance
- Refinement of hazard maps
- Seismic hazards:
 - Permanent ground deformation (PGD)
 - Liquefaction
 - Lateral Spread
 - Landslide
 - Peak ground velocity (PGV)
 - Ground shaking

Brown and Caldwell

Brown and Caldwell

Fragility Analysis

- Requires accurate pipe database
 - Material
 - Size
 - Joint type
- Collaborative effort with the City to create comprehensive database

Lake Oswego Backbone Pipe Material

Fragility Analysis

Fragility Analysis – Breakage Calculations

- Calculate:
 - Repair rate
 - Expected pipeline breaks
 - Probability of failure
- Based on expected ground movement (PGD + PGV)
- Guidance provided by American Lifelines Alliance (ALA)
- Correction factors for known pipe characteristics

Repair Rate = $0.00187 \times PGV$

Repair Rate = $1.06 \times PGD^{0.319}$

Repair Rate = Repairs per 1,000 feet of pipe

Fragility Analysis – Map Expected Pipe Failures

Fragility Analysis – Identify High-Risk Areas

Review of Reservoirs and Pump Stations

- Review:
 - Construction documents
 - Prior condition assessment and inspection reports
 - Seismic hazards analysis
- Perform 5 inspections of pump stations
- Make recommendations for future inspections

Hydraulic Modeling Overview

Update Model Network

- Update model with CIP projects completed since last Master Plan
- Capture changes to the system from the Lake Oswego Tigard Water Program

Demand Projection and Allocation

- Use billing data to calculate water use for each customer
- Join water use to water meter GIS layer
- Allocate demands to model nodes
- Project demands using populating data to end of planning period (2045)

Develop Diurnal Patterns

- Use SCADA data
 - Pump station flows
 - Reservoir levels

Using mass balance approach calculate peaking factors

Operational Calibration

- Calibrate to 2016 max day demand
- Perform 24-hour model simulations
- Compare model output to SCADA data at all pump stations and reservoirs
- Adjust model parameters
 - Pump Station setpoints
 - Pressure zone boundaries
 - Valve settings

Identify Hydraulic Deficiencies

Comprehensive CIP Development

Brown and Caldwell

Questions?

