

Biosolids Recycling at it's Finest

Land Application

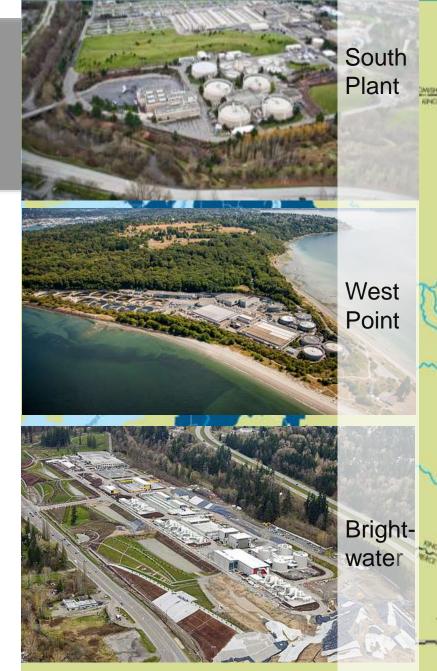
Rebecca Singer Resource Recovery Manager, King County

You've made biosolids, now what?

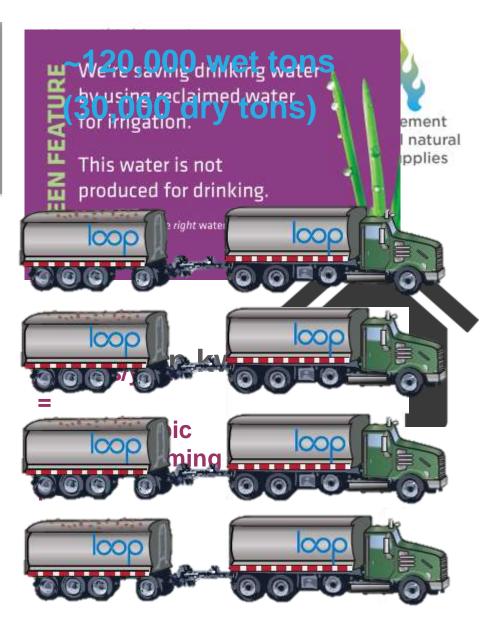
Biosolids Land Application

- Science
- Economics
- Projects
- Logistics
- Considerations

King County Wastewater Treatment Division


Population served: 1.6 million residents

- 5 treatment plants serve 425 square miles
- 4 CSO wet weather treatment facilities
- 186 million gallons of wastewater treated daily


Our Service Area and Facilities

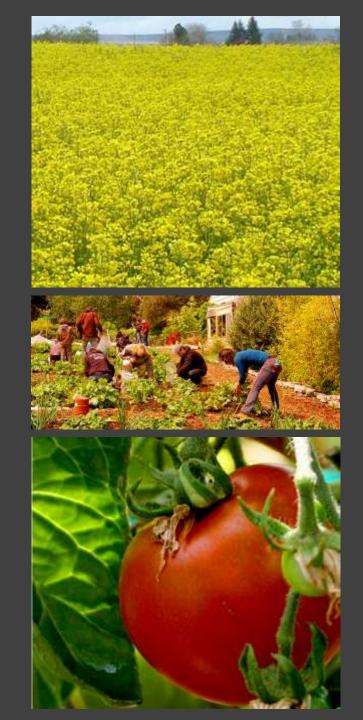
King County Wastewater Treatment Division

Sustainable resources produced:

biogas/renewable energy recycled water biosolids

How we got started

<u>1970's</u>:


 Explored forestry application with UW

<u>1980's</u>:

- Forestry partnerships with
 - MTSG
 - Weyerhauser

1990's - Present:

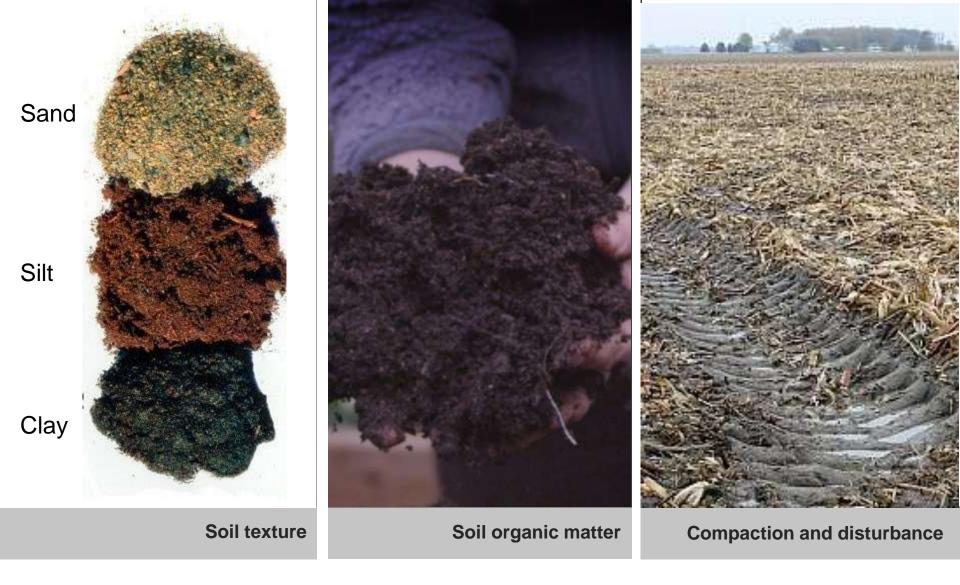
- Ag partnership begins
- Composting partnership

LAND APPLICATION

The Science

BIOSOLIDS ARE GROUNDED IN RIGOROUS SCIENCE

- Repairing soils
- Better nutrient cycling
- Increase in soil microbiology
- Water retention
- Increased plant growth and soil structure



Biosolids builds soil carbon

Common problem in agriculture: Soil compaction

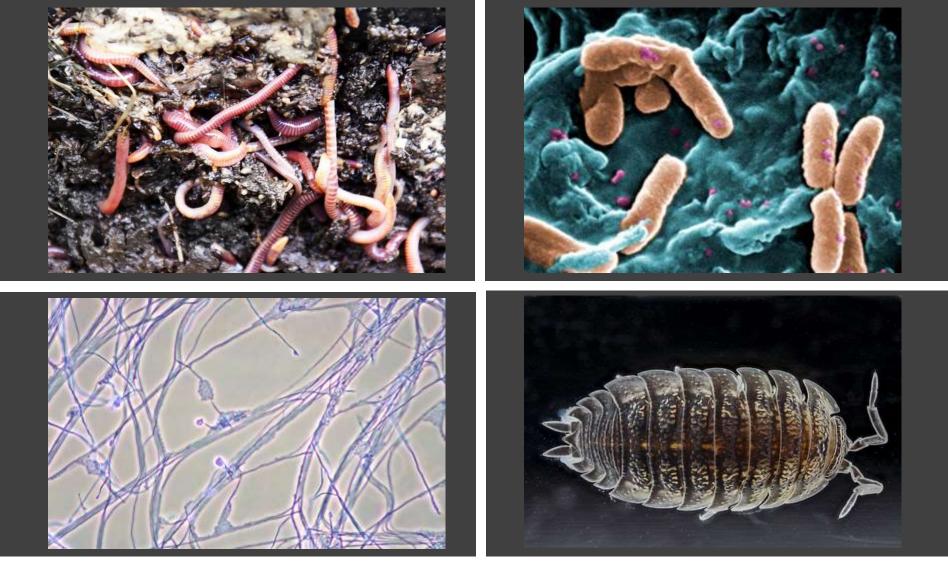
http://www.jonathangreen.com/soil-compaction-problems-solutions.htm

What effects soil structure?

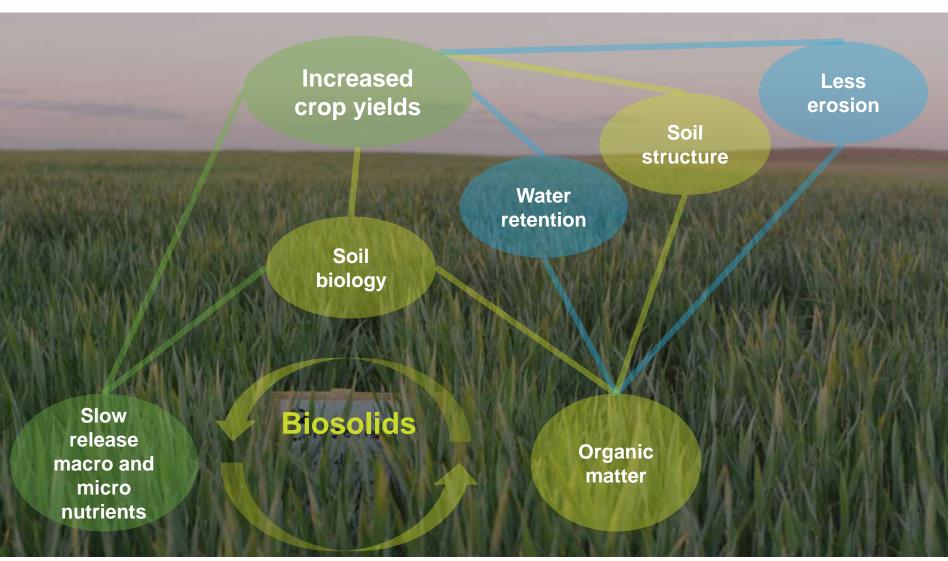
Reductions in soil erosion

Plant Essential Nutrients

Superior to conventional fertilizers, which only contain select macronutrients, Loop replenishes the soil by returning every nutrient plants need for healthy growth.


Macronutrient	Percentage	Micronutrient	Parts per million
Nitrogen	6.8	Iron	14,733
Phosphorus	2.0	Manganese	696
Potassium	O.1	Boron	20
Sulfur	1.3	Copper	405
Calcium	2.5	Zinc	797
Magnesium	0.5	Molybdenum	9

Wheat grown with Biosolids...



...and without Biosolids

Soil Organisms

ENVIRONMENTAL BENEFITS

LAND APPLICATION

The Economics

How do different uses of Loop stack up?

	Cost	Environmental benefit	Climate change solution	Social benefit
Farms, forests & land reclamation	\$	***		ТŤ
Compost	\$	***		Т і
Waste to energy incineration*	\$\$\$\$	Environmental cost	3	Ť
Landfill*	\$\$\$	Environmental cost	Environmental cost	Social cost

*Not considered beneficial use; not allowed for long term use under Washington State law.

Generates Revenue

Supports Export Industries

Cost Sharing With Other Agencies

Economic Benefits

Nutrient value:

Approximate first-year fertilizer replacement value for anaerobically-digested biosolids.

Biosolids Nutrient	Expressed As	Biosolids Total Nutrient	Biosolids Available Nutrient	Nutrient Value	Fertilizer Replacement Value of Biosolids		
		% dry wt.	% of total nutrient	\$ per lb	\$/dry ton		
Nitrogen	Ν	5.0	35	0.57	\$19.95		
Phosphorus	Р	2.5	40	1.09	\$21.80		
Potassium	К	0.3	100	0.69	\$4.14		
Sulfur	S	1.0	35	0.38	\$2.66		
Total					\$48.55		

At approximately \$8.00/dry ton (\$2.00/wet ton), biosolids help to keep farming viable in areas where land is marginal, irrigation may not exist, and profits are slim.

LAND APPLICATION

The Projects

Agriculture Projects Boulder Park Inc – Year round

Boulder Park Inc – Year round Natural Selection Farms – winter backup

BPI

Public private partnership Unique dual biosolids permit

- Over 100 farmers
- 90,000 acres
- 30 utility contracts
- County owned equipment

Boulder Park Inc.

- Maintains Equipment
- Manages sites
- Does application

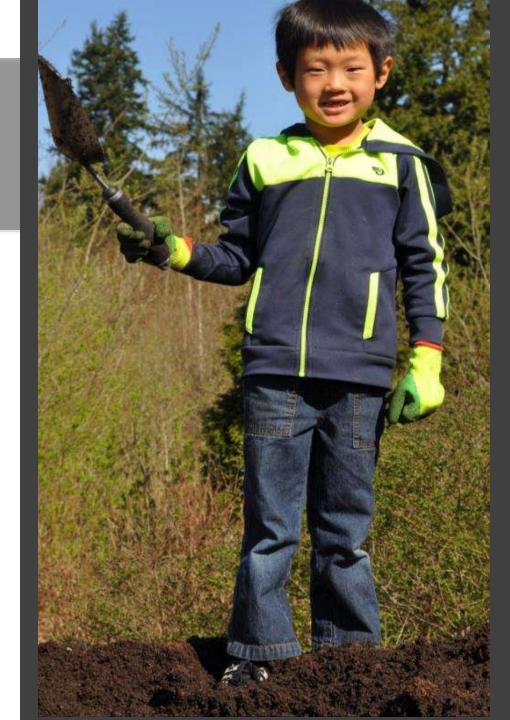
Department of Natural Resources – 300 acres per year

Snoqualmie Forest – 1000 acres per year

Forestry Project

Forestry Projects

Oldest project in WA State


- Partnerships with:
 - MTSGT
 - Private Timber Co
 - Public Timber Lands
- Multiple Forest Sites
- Contract the land application
- County owns equipment

Composting partnership

GroCo Compost

- Class A compost
- 1% King County biosolids production
- Provides 100 yds each year for public outreach and education

Used in community and home gardens across King County

LAND APPLICATION

The Logistics

Biosolids Management Guidelines

- Land application plans
 - Site design and layout
 - Maps, recordkeeping
 - Monitoring plans
- Protections for ground & surface
 - Application rates based on nitrogen
 - Buffers from water bodies, wells

Agronomic Rates are based on Nitrogen Requirements

BIOSOLIDS APPLICATION RATE WORKSHEET Prepared by Andy Bary, Washington State University For the Boulder Park Project BUF

▼										2010						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
		Yield	Crop N	Soil	SOIL NO3-N + NH4-N	Soil NO3-N + NH4-N	Soil Profile NO ₃ -N + NH ₄ -N	Soil Organic	Soil TKN Est. of (Org-N)	Previous BS	Estimated N from	Crop Fertilizer	Biosolids	Biosolids App.	Biosolids App.	Total
Field (1)	Biosolids Source	Goal bu/a	Requirement lb./a (2)	Depth inches	(Inorganic-N) mg/kg (3)	(Inorganic-N) Ib./a (4)	(Inorganic-N) Ib./a (5)	Matter 0-12 inch	Release lb./a (6)	Applications lb. N/a (7)	Crop and Soil lb./a		Avail N Ibs N/DT (9)	Rate DT/a (10)	Rate WT/a (11)	Solids (12)
MT14	Brightwater	55	149	0-12	3.9	13.7	20.0	1.6	32.0	0.0	52.0	96.6	46.0	2.1	10.7	0.197
2016		70	189	12-24	1.8	6.3	20.0	1.6	32.0	0.0	52.0	137.1	46.0	3.0	15.1	0.197
MT14	South Plant	55	149	0-12	3.9	13.7	20.0	1.6	32.0	0.0	52.0	96.6	39.7	2.4	10.0	0.242
2016		70	189	12-24	1.8	6.3	20.0	1.6	32.0	0.0	52.0	137.1	39.7	3.5	14.3	0.242
MT14	KC West	55	149	0-12	3.9	13.7	20.0	1.6	32.0	0.0	52.0	96.6	38.4	2.5	8.5	0.296
2016	Point	70	189	12-24	1.8	6.3	20.0	1.6	32.0	0.0	52.0	137.1	38.4	3.6	12.1	0.296

(1) Field and Year of biosolids generation

(2) Crop N Requirement = Column 3 X 2.7 +- 0.2 lb. N/Bu from Extension Bulletin EB1987, Dryland Winter Wheat, Eastern Washington Nutrient Manage

(3) Raw soil test values in mg/kg/1ft

(4) Lbs N/a = mg/kg * 3.5 from EB1987

(5) Profile total N lb/a

(6) Assumes 20 lbs Org-N release rate x % organic matter in a 12 inch soil depth.

(7) N avability from previous biosolids applications per Extension Bulletin PNW0511e, Worksheet for Calculating Biosolids Application Rates in Agricultu

(8) Column 4 (crop N requirement) minus column 12 (estimated N from crop and soil) equals crop fertilizer requirement.

(9) For example: 38.6 lbs N/dry ton (WP) using 30% mineralization rate and 60% volatilization rate per Extension Bulletin PNW0511e

(10) Application rate dry ton/acre = column 13 / column 14

(11) For example: application rate wet ton/acre = column 8 divided by 28.4% Total Solids West Point.

(Soil analyses performed by Soiltest of Moses Lake. Please contact King County for copies of raw data, if needed.)

(12) Biosolids solids content for calculating wet/acre

(13) Application History: MT14 is a new application site never applied with biosolids. Field added to permit coverage in 2015.

Note1: Crop is soft white wheat unless otherwise specified.

Note2: King County biosolids available N data based on 2015 average approved by Ecology on 4/12/2016.

MT14

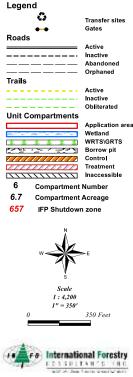
2016

Agronomic rates account for available N release

Biosolids agronomic application on a dryland wheat field.

A typical agricultural application rate

Transporting Biosolids


The Most Visible Part of Your Operation

Biosolids Application Unit 26-09-18B

Acres: 45.6 Trails: 8,310

Monday, January 30, 2012

Buffers: Stream, wetland and wells

trail locations are flagged

- Tankers
- Utility trailers
- End dumps
- Side dumps
- Belt trailers
- Dump trucks

Equipment can be unique to your facility

Custom-Built Dump Truck and Trailer

Public perception is important

LAND APPLICATION

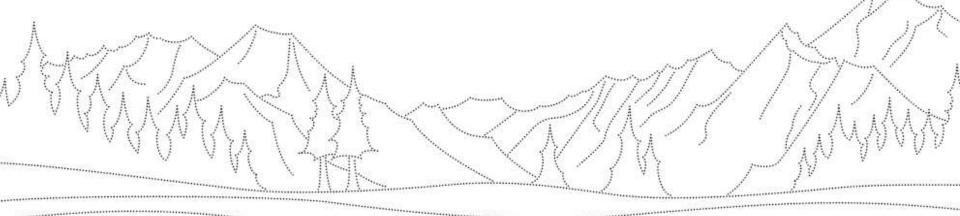
Considerations

- Utility owns equipment and hauls
- Utility owns equipment contracts hauling
- Combined trucking and land application contract (trucking subcontracted)

Customize your project

- Cradle-to-grave
- Periodic site visits
- Routine contact with land applicator and haul contractors(s)
- Ensure contractors follow regulatory requirements

Generator responsibilities



I-90 Off-ramp, Thorp, WA

It can happen. How will you respond?

Questions?

Rebecca Singer Rebecca.singer@kingcounty.gov

