



# BUTTERFIELD INTAKE SCREEN REPLACEMENT

Ryan Withers, PE | RH2 Engineering

#### **PROJECT LOCATION**





#### **PROJECT LOCATION**





#### **INTAKE STRUCTURE BACKGROUND**

- Originally constructed in 1952
- Modified in 1985 with new traveling belt screen and mechanical equipment
- Pumps raw Columbia River water to City's Butterfield WTP (28 to 30 MGD)
  - Future 34 MGD capacity



#### **TRAVELING BELT SCREEN BACKGROUND**

- 24 MGD capacity
- Beginning to fail in need of cleaning and repair
- Does not meet WDFW or NMFS fish protection guidelines





#### **ORIGINAL SCOPE**

- Refurbish existing traveling belt screen
- Design 2<sup>nd</sup> traveling screen for redundancy and to meet future WTP capacity





### **PRELIMINARY DESIGN**

- Existing intake bay dimensions
- WDFW and NMFS Fish Protection Guidelines

| Description                                             | WDFW    | NMFS              |
|---------------------------------------------------------|---------|-------------------|
| Maximum Opening Between Wire Mesh (inches) <sup>1</sup> | 0.09375 | 3/32 <sup>1</sup> |
| Minimum Wire Mesh Diameter (inches)                     | 0.080   | None Provided     |
| Maximum Approach Velocity (fps)                         | 0.40    | 0.40              |

(1) The maximum opening between wire mesh is measured diagonally. The resulting dimensions that provide the largest open area is a 0.0663-inch by 0.0663-inch square.

- Traveling screen manufacturer specifications and recommendations
- Original screen design
  - 0.125-inch openings
  - 0.77 fps approach velocity

### **PRELIMINARY DESIGN (CONT.)**

#### Intake screen capacity

|                                                  | Traveling Screen Capacity (MGD) |               |  |
|--------------------------------------------------|---------------------------------|---------------|--|
| Fish Protection Guideline Agency                 | 1 Intake Bay                    | 2 Intake Bays |  |
|                                                  |                                 |               |  |
| Extreme Low River Water Surface Elevation        |                                 |               |  |
| WDFW (14 Gauge Wire Mesh and 0.09375" Openings)  | 6.8                             | 13.7          |  |
| NMFS (14 Gauge Wire Mesh and 3/32" Openings)     | 4.8                             | 9.7           |  |
| NMFS (18 Gauge Wire Mesh and 3/32" Openings)     | 8.1                             | 16.1          |  |
| Siemens (18 Gauge Wire Mesh and 0.078" Openings) | 9.2                             | 18.3          |  |
|                                                  |                                 |               |  |
| Normal River Water Surface Elevation             |                                 |               |  |
| WDFW (14 Gauge Wire Mesh and 0.09375" Openings)  | 8.6                             | 17.3          |  |
| NMFS (14 Gauge Wire Mesh and 3/32" Openings)     | 6.1                             | 12.2          |  |
| NMFS (18 Gauge Wire Mesh and 3/32" Openings)     | 10.2                            | 20.3          |  |
| Siemens (18 Gauge Wire Mesh and 0.078" Openings) | 11.6                            | 23.1          |  |

Evaluated increasing width of intake bays



### **PRELIMINARY DESIGN (CONT.)**

#### Conclusion

 Capacity of two new screens would be significantly less than capacity of existing screen and existing or future WTP capacity.



#### **REVISED APPROACH**

RH2

- Bathymetric survey (April 2014)
- City performed dive to inspect trough
  - Confirmed dimensions (10-foot width)



#### **REVISED CONCEPT**

- Install barrel screens beyond trough
  - Two 17 MGD barrel screens
  - 15-foot depth at low water level
- Route piping within trough
  - 36-inch diameter HDPE piping
- Install bedding and backfill material within trough
  - Additional anchoring
  - Pipe protection



#### PERMITTING

- Agencies
  - ACOE, DNR, WDFW, USFWS, NMFS, Ecology, City of Pasco, Franklin County
- SEPA checklist and DNS
- Critical areas ordinance
- Shoreline substantial development
- Hydraulic Project Approval (JARPA)
- Aquatic Use Authorization
- Section 404/10
- Nationwide Permit
- Biological Assessment

### **PERMITTING (CONT.)**

- Site visit with ACOE and WDFW (May 2014)
- Review agency feedback
  - Fish work windows
    - December 15 February 28
    - July 16 September 30
  - Permitting guidance
  - Agreed with revised concept
  - Considered an improvement for fish and environment



#### DESIGN

- Mechanical design
  - Equipment removal
  - Construction sequence
    - Facility to remain operational throughout construction
  - Anchoring
    - Dual-purpose: to elevate screens off river bottom
  - Screen sizing
    - 42-inch diameter, 146-inch length
  - Screen isolation
  - Barrel screen cleaning



### **DESIGN (CONT.)**

- Structural design
  - Barrel screen anchoring
  - Plugging existing intake bays
  - Reinforcing traveling belt screen void in floor
- Electrical design
  - New VFDs, harmonic filters, control panels, and soft starts
- SCADA design
  - Automatic control of VFDs and hydroburst system

#### **BIGGEST DESIGN CONSTRAINTS**

- Marine environment
- Site accessibility
- In-water work window
- Construction sequencing
- Trough and forebay footprint
- Equipment lead time
  - Screens = 8 to 10 weeks
  - Hydroburst = 14 to 16 weeks
  - MCC = 4 to 6 weeks



#### **BARREL SCREENS**





#### **IN-WATER INSTALLATION**





#### **CONCRETE ANCHOR**





#### **HDPE PIPE INSTALLATION**





#### HDPE PIPE INSTALLATION





#### **HDPE PIPE INSTALLATION**





#### **BARREL SCREEN INSTALLATION**





#### **ISOLATION VALVE INSTALLATION**





#### **BEDDING AND BACKFILL**









#### **HYDROBURST EQUIPMENT**





#### **HYDROBURST EQUIPMENT**





#### **HYDROBURST EQUIPMENT**





#### **ELECTRICAL IMPROVEMENTS**





#### **HYDROBURST TEST**





#### TRAINING



#### RH2

#### **FINISHED PRODUCT**



RH2

#### **FINISHED PRODUCT**





#### **CONSTRUCTION CHALLENGES**

- Presence of thimbles within sluice gates
- Presence of cold joint in structure wall
  - Reconfiguration of pipe penetration
  - Form installation and removal
  - Additional bedding material



#### **CONSTRUCTION COSTS**

| Description                       | Cost      |
|-----------------------------------|-----------|
| Barrel Screens                    | \$51,000  |
| Hydroburst Equipment and Training | \$61,000  |
| Construction/Installation         | \$779,000 |
| Routine Maintenance               | \$12,000  |
| Total                             | \$903,000 |



#### AWARDS

- 2017 ACEC Washington
  - Engineering Excellence Silver Award
  - Successful Fulfillment of Client/Owner Needs



- 2017 PNWS-AWWA
  - Excellence in Engineering
  - Small project category (under \$5M construction cost)



**American Water Works Association** Pacific Northwest Section 2017 Excellence in Engineering Award



Ryan Withers, PE RH2 Engineering, Inc. rwithers@rh2.com 509.392.6503



## **QUESTIONS?**