

Corrosion Control Treatment: Lessons Learned from the Field

Milt Larsen, Kennedy/Jenks

ater

Lessons

- Source changes require re-evaluation of corrosion treatment
- Changes in treatment can affect lead & copper corrosion
- Just because the system is "optimized" does not mean there are no corrosion issues
- All plumbers are not created equal
- Pay attention to the NaOH injection point design

Lesson 1: Changing Sources Require Re-evaluation of Corrosion Control Treatment

Central Arizona Project
South Tahoe PUD, CA
Lake Stevens, WA
Longview, WA
Manteca, CA
Flint, MI

Central Arizona Project

Tucson

- Historically used groundwater
- Imported surface water from CAP
- Destabilized scale on the pipe wall
- Vote to not allow CAP water into system
- Substantial \$ spent on corrosion control evaluations and treatment
- CAP water used for ASR

S Tahoe PUD Location Map

San Francisco

Californ<mark>ia</mark>

Vater

Los Angeles

San Diego

Bakersfield Well

Arrowhead Well

South Upper Truckee Well 3 14,000 + customers
14 Active wells
6.6 MGD average production
Service Area Elevation 6,230 to 7,000 above sea level

Lake Tahoe

Kennedy/Jenks

Google

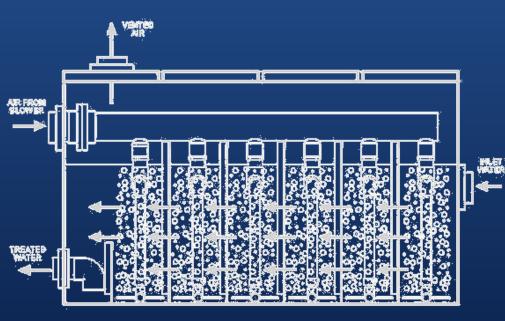
Arsenic Compliance Plan

Arrowhead & Bakersfield Wells

- Reduce their production
- Provide arsenic treatment
- S Upper Truckee Wellfield
 - Increase production
 - Treat to reduce water's corrosivity

Corrosion Concerns Christmas Valley Pressure Zone

Lead & Copper Rule Monitoring (system wide)


- 90th percentile lead 6.4 μg/l
- ♦ 90th percentile copper 0.48 mg/l
- 4 of 7 first draw tap samples exceeded 1.3 mg/l copper when the South Upper Truckee wells were in service
- Premature corrosion failures
 - Hot water heaters
 - Sand separator

Aeration Alternatives for pH Adjustment

Low Profile Aeration

- DeepBubble Mult-Stage Aeration
- Shallow Tray Aeration
- Packed Tower Aeration
- Venturi Eductor CO₂
 Stripping
- Multiple Tray Aeration
 Rotating Packed Bed Stripping

Kennedy/Jenks

Pilot Testing

Goals

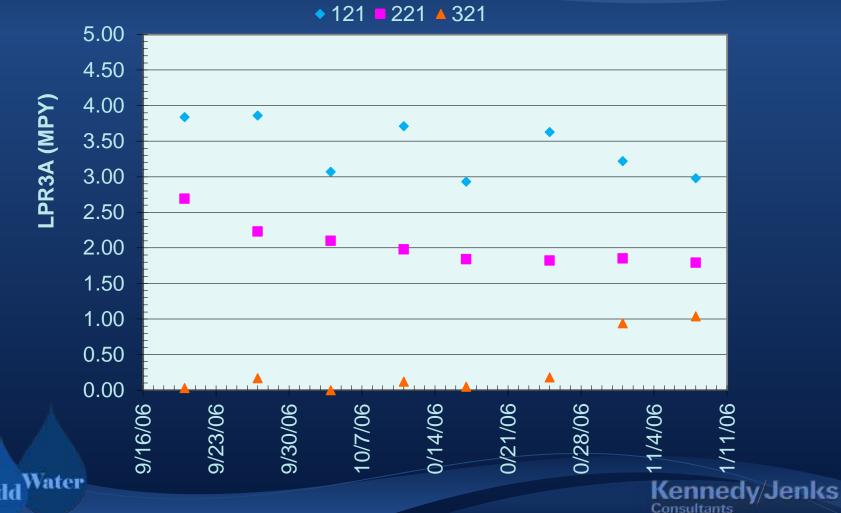
- Raise pH \geq 7.5
- ♦ CO₂ ≤ 5 mg/l
- ♦ Rn-222 ≤ 300 pCi/I
- Evaluate
 - Copper corrosion & leaching
 - Lead-tin solder corrosion & leaching
 - Mild steel corrosion & scale release
 - Galvanized steel corrosion & scale release

Pilot Aeration Unit

Lowered Rn-222

- Well water 462 pCi/l (median)
- Aerated water 18 pCi/l (median)
- Stripped carbon dioxide to less than 5 mg/l
- Increased pH from 6.2-6.3 to 7.6
- Moderate increase in dissolved oxygen from 7.4 to 9.5 mg/l

Linear Polarization Probes & Copper Tubing



Linear Polarization Measurements: Copper

COPPER

Findings: Copper Corrosion

Aeration

- Reduced copper corrosion 34%
- Reduced first draw copper 30%
- Aeration plus sodium silicate
 - Reduced corrosion 83%
 - Reduced first draw copper 58%
 - Silicate addition was beneficial
- Uniform corrosion
- No pitting corrosion observed

Findings: Lead-Tin Solder Corrosion

Aeration

- Reduced lead-tin corrosion 90%
- Reduced first draw lead >77%
- Uniform corrosion with very slight pitting

Aeration plus sodium silicate

- Reduced lead-tin corrosion 52%
- Reduced first draw lead >77%
- Uniform corrosion with very slight pitting
- Silicate addition not beneficial

Treatment Recommendations

- Provide low profile aeration for South Upper Truckee Well No. 3
- Provide room for 3 mg/I NaOH feed or sodium silicate
- Collect lead & copper tap samples after the facility has been on line 4-6 months

South Upper Truckee Well 3 Aeration Facility

- 2 DeepBubble Multi-Stage Aeration Units
- Results
 - Raised pH from 6.35 to 7.75
 - Reduced CO₂ from 30 mg/l to <2 mg/l</p>
 - Reduced Rn from 589 pCi/l to 44 pCi/l
 - Christmas Valley tap samples (90th percentile)
 - Pb <2.5 µg/l</p>
 - Cu 0.03 mg/l
 - Supplemental sodium hydroxide is not necessary

Kennedv/Jenks

South Upper Truckee Well 3 Aeration Facility

Lake Stevens

Everett water

- Elevated DO: 11.0 mg/l
- High ORP: 600
- Soft, low alkalinity, low TDS water
- Lake Stevens well
 - Low DO: 0.5 mg/l
 - Low ORP: 350
 - Moderately hard, iron, manganese, H_2S , ammonia
 - Groundwater introduced into area previously receiving surface water

Kennedv/Jenks

- Destabilized iron scale on galvanized steel and steel pipe
- Leaks in unlined steel
- PUD discontinued use of well as a result

Manteca, CA

- Originally 100% groundwater supply
- 2005 Sierra surface water supply added
- Red water complaints
 - Manteca– pre 1970 galvanized services
 & plumbing
- No red water complaints
 - Tracy Zn barrier coat
 - Lathrop new community
- 90th percentile Pb & Cu
 - Virtually unchanged

Manteca, CA Surface Water

Surface water: low TDS, high DO • Ryzner Index: 9.3 >8 increasingly corrosive of iron & steel ♦ >8.5 typical of red water conditions CI⁻/SO₄⁻² mass ratio: 2.8 >0.58 increased galvanic corrosion Cl₂ residual: 1.2 mg/l at turnouts > 0.8 mg/l increasing corrosive to steel

Florist shop

- Galvanized service
- Received groundwater in morning
- Received surface water in afternoon
- pH varied 7.4 to 8.2
- TDS varied 82 to 260 mg/l

Manteca Corrective Action

- Modify operation of S San Joaquin Irrigation District WTP
 - Initially operating at pH 8.0 & 40 mg/l alkalinity (lime & CO₂ addition)
 - Reduced CO₂ addition
 - Raised pH near 8.5
- Orthophosphate addition at turnouts
 - Not implemented

Lesson 2: Changes in treatment can effect lead & copper corrosion

Washington, DC

Washington, DC

- Potomac River source of supply
- Conventional treatment with free Cl₂ residual
- 1992 June 1994 initial LCR sampling exceeded Lead Action Level
- 1993-1996 TCR violations
- 1994 increased Cl₂ residual to 4 mg/l
 - ORP increased
 - Pb (II) scale oxidized to Pb (IV)
 - PbO₂ scales low solubility over wide pH range
- June 1997 optimum corrosion control LSI > 0

Washington, DC

1992-2004 seasonal pH fluctuation 7.0 to 8.9 Feb 2000 optimum corrosion control pH • 7.7 \pm 0.3 points of entry ♦ 7.7 ± 0.3 distribution samples May 2002 optimum corrosion control pH 7.4 to 7.8 points of entry 7.0 distribution samples Retroactive to July 2000 Feb 2000 reduced tap monitoring

Washington, DC

Nov 2000 converted to chloramine ▲ Lower ORP from >650 mV to 450-500 mV Pb (IV) scale reverted to Pb (II) Pb (II) influenced by low and varying pH Exceeded Lead Action Level 2000 – 2004 90th percentile 36 to 75 μg/l 17 to 68% samples exceeded 15 μg/l Aug 2004 Orthophosphate addition pH 7.7 ± 0.1 goal (± 0.3 enforceable)

Lesson 3: Just because the system is "optimized" does not mean that there are no corrosion issues

- Horizon House, Seattle fire sprinkler & recirculation hot water system leaks
- Spokane VA Hospital fire sprinkler leaks
- San Ramon, EBMUD blue water
- Manteca, CA red water
- Hollister Country Rose blue water

Horizon House - Seattle

 Three Buildings Housing 450 Elderly Assisted Living Housing
 Buildings – 5 to 20 Years Old.
 Water Supply: LCR Optimized

 pH – 8.0 - 8.2,
 Alkalinity > 20 mg/l CaCO₃

• Problems:

- Recirculating Hot Water Copper Pipe Pitting Failures
 - 10 15 years
- Fire Sprinkler Water Supply Steel Pipe Pitting Failures
 - 15-20 years

Kennedy Jenks

Horizon House

Sink Sampling for Copper

- Hot Water 0.5 mg/L + 0.2 mg/l
- Cold Water 0.2 mg/l + 0.1 mg/l
- Corrective Measures:
 - Smaller hot water circulating pumps to lower velocity from 7 to 3 ½ FPS
 - Use Type L copper rather than Type M (increased wall thickness)
 - Phosphate corrosion pot feeders for fire sprinkler supply
 - Reduce frequency of fire sprinkler pipe flushing from weekly to monthly

Kennedy Jenks

EBMUD: San Ramon

EBMUD optimized for corrosion control Source: S Bay Aqueduct Extended transmission main with new reservoir to serve developing area • Water age Lost chlorine residual • \approx 5,000 residences • 40 - 50% blue water complaints

EBMUD: San Ramon

Poorly adherent malachite scale
Rechlorination station installed after the reservoir
Building moratorium
Developers sued EBMUD
EBMUD sued insurance company
Battling experts
MIC
ORP

>\$10 million award

Conclusions:

 Changing treatment and water quality can destabilize corrosion scale

- Corrosion problems occur even when system has "optimized" per LCR
- Water quality and purveyor are often blamed
- Water purveyors need to carefully assess situation or liability can be substantial

Lesson 4: All Plumbers Are Not Created Equal

Duplex in Pierce County served by a groundwater
The Hamilton, Palo Alto

Pierce County Duplex


First draw copper > 6 mg/l
Concerned resident
Attorneys got involved
Plumbing samples collected
Acidic flux runs

The Hamilton Apartments: Palo Alto

- 3-Year-old building housing
- 35 luxury residences for elderly
- Kitchen and dining room
- All copper piping
- Black greasy scum in tubs and sinks
- Particulate matter clogging faucets in a week
- Discoloration of kitchen cartridge filters in a week
 - Plumber/contractor responsible under warranty

Kennedy/Jenks

Excess Flux and Dirt Deposits in Luxury Apartment Residence – Palo Alto, CA

ater

The Hamilton Water Quality Testing

Before – Chlorine Disinfection of Apartment Complex Plumbing

	Cold Water	Hot Water	
HPC	91 – 3700	3700 – 57,000	
Coliform	1 Positive/4	0 Positive/3	
Iron	1.35 mg/l	1.5 – 3.2 mg/l	
Copper	1.6 mg/l	1.5 – 6.5 mg/l	

Kennedy/Jenks

Consultants

The Hamilton – Water Quality Testing

After Chlorine Disinfection (200 mg/l for 3 hrs)

	Cold Water		Hot Water	
HPC	0 – 4	0 – 14	0 – 2	0 – 52
Coliform	0/14	1/14	0/14	0/4
Iron (mg/l)	< 0.05	0.10	< 0.05	0.15
Copper (mg/l)	0.01	0.05	0.07	0.10
рН	8.45	-	7.98	-

Kennedy/Jenks

Consultants

The Hamilton – 3 Months After Chlorine Disinfection*

Tub Film Testing

- Petroleum hydrocarbons 5. 9%
- Copper 2.3 mg/l
- Iron 0.06 mg/l

*200 mg/l for 3 hours

Corps of Engineers Hot Water Flushing Technique to Dissolve Excessive Flux

- ♦ Temperature: 160 180°F
- Velocity: > 7 FPS
- Time: 4 Hours
- Facilities Engineering Application Program
 - ♦ FEAP TR FM 94109 June 1994

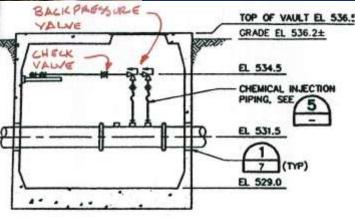
Demonstration of a field rehabilitation technique for removing corrosive solder flux in cold water copper piping systems."

Lesson 5: Pay attention to the NaOH Injection Point Design

 Pipeline immediately downstream of NaOH can have a pH significantly higher that the downstream distribution system

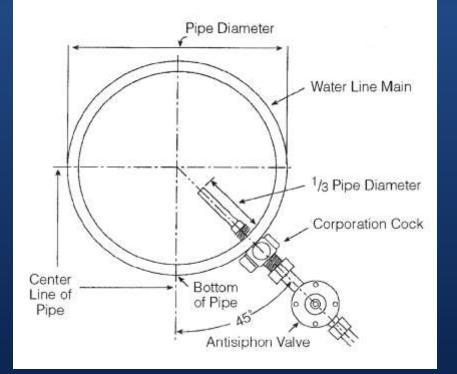
- Do not feed NaOH near a control valve
- Have a positive NaOH shutoff at the injector

Do Not Feed NaOH in Front of a Control Valve



NaOH Injected Above the Pipe

 NaOH may leak into water main when the well shuts down


 CaCO₃ precipitate will form in the pipe

INJECTION VAULT SECTION

Kennedy Jenks

Improved NaOH Injection

 Install the injector & NaOH piping below horizontal centerline

 Consider installing an electrically actuated ball valve near the injector interlocked with the well pump starter

Soften Carrier Water if Used

Questions