Replacement planning for water mains An economic approach

2018 TACOMA PNWS-AWWA

Darin Johnson President, BIS Consulting

PNWS-AWWA Section conference April 2018

Everybody knows exactly what asset management is

Everybody knows exactly what asset management is

Demonstrating value - "why is this good?"

```
Providing transparency - "show me."
```

Primary tenets:

- Customer focus
- Data-driven
- Repeatable, defensible, challengeable

What is asset management really?

At most utilities there is a gap between engineering and finance

A typical example – aging assets

Conventional Approach (technical)

- Assess condition, consider calendar age
- Replace when:
 - Condition is poor
 - Age reaches expected life

Technical approach fails to consider risk quantitatively

What, exactly, is expected useful life?

- Median Life?
- Mean Life?
- Knee of curve?
- N% failure rate?
- Other?

Economic End-of-Life

Least life cycle cost

- Optimize replacement or rehab timing
- Balance risk of failure against benefits of delaying capital expenditures

AC mains, probability of failure versus age

Data sources

- Electronic records going to back to 2000 (334 failures).
- Manual search to 1994 (101 failures).
- Before then, records are unreliable.
- Includes breaks and leaks.

DEFECT TYPE	COUNT	
Blow Out	109	
Circumferential Crack	106	
Collar	34	
Fitting	18	
Longitudinal Crack	14	
Small Hole	26	
Third-party	13	
Unknown	13	
Total	333	

AC pipe Comparison of actual and projected failure rate 0.0300 0 0.0250 _ep 0.0200 0.0150 0.0100 0.0050 0.0000 0 10 20 30 40 50 60 70 80 Actual rate ----- Projected rate ۲

Consequence of failure

What happens if this asset fails?

- Must be based on costs from the customers' perspective.
- Consequences are defined in terms of drivers.
- Defined in the same terms for every asset class.

Common Drivers...

Financial

Customer costs – the idea

Failure scenarios

75.0%	Pipe breaks and requires rep	air		
	Direct costs			
	Repair cost	\$60,000	\$60,000	
	Zoning	Commercial	\$25,000	
	Slope	Unknown	\$0	
	Max of Zoning/Slope	Zoning	\$25,000	
	Road repair	Unknown	\$500	
	Conveyance	24"	\$100,000	
	Indirect costs			
	Traffic impact	Unknown	\$500	
	Total scenario consequence cost (\$)		\$186,000	
25.0%	5.0% Pipe breaks and leads to loss of service			
	Direct costs			
	Repair cost	\$60,000	\$60,000	
	Zoning	Commercial	\$25,000	
	Slope	Unknown	\$0	
	Max of Zoning/Slope	Zoning	\$25,000	
	Road repair	Unknown	\$500	
	Conveyance	24"	\$100,000	
	Indirect costs			
	Traffic impact	Unknown	\$500	
	Negative pressure, BWN	Yes	\$25,000	
	Police stations	No	\$0	
	Fire stations	No	\$0	
	Schools	No	\$0	
	Hospitals	No	\$0	
	Assisted living centers	No	\$0	
	Electrical substations	No	\$0	
	Olympic pipeline	No	\$0	
	City parks	No	\$0	
	Wetlands	No	\$0	
	Streams	No	\$0	
	Duration not served (hours)	8.0		
	Demand not served (gpm)	2.5	\$1,560	
	Demand w/ low pressure (gpm)	11.3	\$7,043	
	Total scenario	consequence cost (\$)	\$219,603	

Calculating economic life, creating a long-range plan

Now all the pieces are in place...

- Each asset is evaluated individually to determine remaining life.
- Forms the basis for long-range spending projection.

Economic life tool

Does this mean the City of Bellevue should stop replacing water mains?

The City is still evaluating results and assumptions – this is *one piece* of information.

There is clearly a strong case for targeted replacements:

- Opportunistic, e.g., piggyback on roads work.
- "Poor" result from Echologics test implies high multiplier on failure probability, reducing remaining economic life to zero in some cases.

Example 20-year replacement program, integrated with GIS

Grouping multiple assets to create a project

While I'm in the neighborhood, should I also replace other equipment?

The "Sandbox"

User Defined Sandbox 150672

Thank you

