

Not Just Your Father's Chlorine Safety: A Lesson in Modern Chemical Safety Techniques

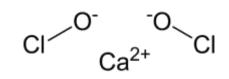
AWWA - Pacific Northwest Section Conference

April 27, 2018

Gary M. Lohse, P.E.

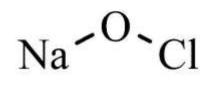
Topics to Be Covered

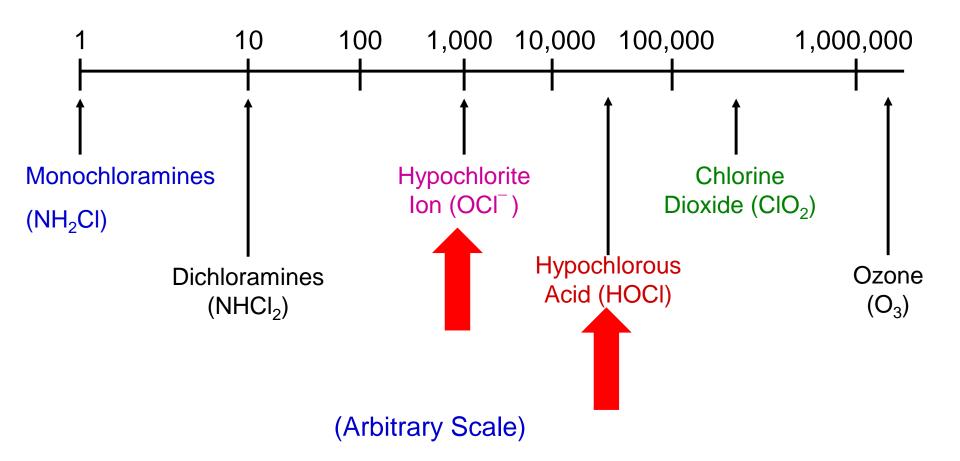
- Background
- Solid Chlorine
 - Calcium hypochlorite
- Liquid Chlorine
 - Commercial (Bulk)Sodium Hypochlorite
 - On-Site Hypochlorite Generation
- Gas Chlorine
 - Gas Basics
 - Your Father's Chlorine Safety
 - Containment Systems
 - Automatic Shut Off Valves
 - Emergency Scrubber Systems
- Summary



Water / Wastewater Disinfection

- Chlorine Based
 - Calcium hypochlorite
 - Commercial hypochlorite (bulk/bleach)
 - On-site hypochlorite generation
 - Gas chlorination
 - Chlorination-De-chlorination
 - Chloramines
 - Chlorine dioxide
- Alternate
 - UV disinfection
 - Ozone
 - Peracetic Acid





qdbaigon price.co

DISINFECTION EFFECTIVENESS

EPA ESTIMATE

C hlorine Chemistry

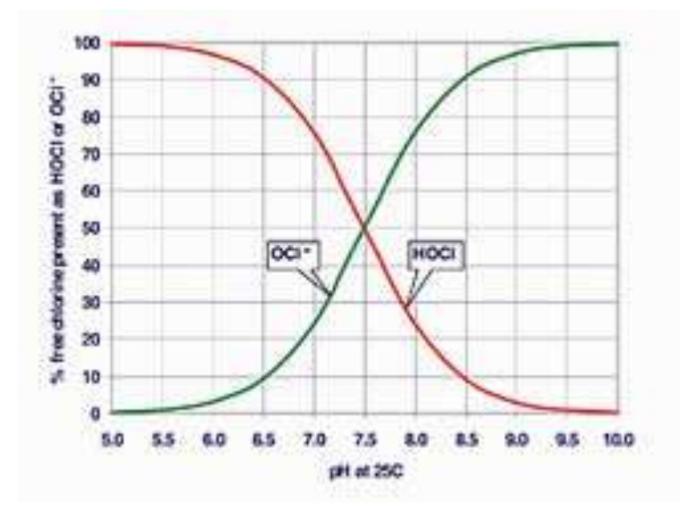
Definitions - 2

HOCL & OCL = Free Residual Chlorine

+

<u>Chloramines = Combined Chlorine Residual</u> Total Chlorine Residual

- Analytical methods can measure Free or Total Chlorine Residual
- Combined Chlorine Residual must be determined arithmetically


Chlorine Reactions in Water

 \bigcirc Chlorine + Water \rightarrow Hypochlorous Acid + Hydrochloric Acid

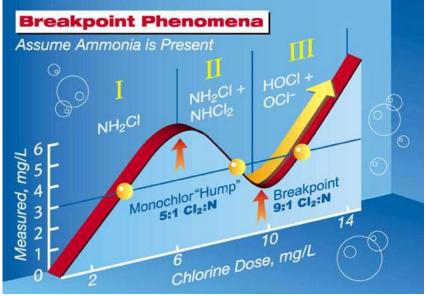
- $Cl_2 + H_2O \rightarrow HOCI + HCI$
- Dissociation Reaction
 - HOCI \rightarrow H⁺ + OCI⁻

Disinfection Distribution

Relationship between HOCL and OCL⁻ at various pH values

Chlorine Reactions

- ♦ Cl_2 + NH_3 → NH_2Cl (Monochloramine)
- \bigcirc NH₂Cl + Cl₂ \rightarrow NHCl₂ (Dichloramine)
- $MHCl_2 + Cl_2 \rightarrow NCl_3$ (Trichloramine, Nitrogen Trichloride)


Dechlorination Reactions

 \bigcirc SO₂ + H₂O \rightarrow H₂SO₃

♦ H_2SO_3 + NH2Cl + H2O → NH4Cl + H2SO4 (Monochloramine)

Chemistry

Breakpoint Chlorination

- Ammonia destruction reactions: $2NH_2CL + HOCL \rightarrow N_2 + H_2O + 3HCL$ $NH_2CL + NHCL_2 \rightarrow N_2 + 3HCL$
- When dosage reaches approximately 8 to 10 times the ammonia concentration (theoretical ratio is 7.6) the "breakpoint" is reached.
- Complete destruction of ammonia seldom occurs at breakpoint and some chloramines persist beyond it.

Other Forms of Chlorine

 \bigcirc Calcium Hypochlorite + Water \rightarrow Hypochlorous Acid + Alkali

• $Ca(OCI)_2 + H_2O \rightarrow 2HOCI + Ca(OH)_2$

 \bigcirc Sodium Hypochlorite + Water \rightarrow Hypochlorous Acid + Alkali

• NaOCI + $H_2O \rightarrow HOCI + NaOH$

Equivalent Chlorine Forms

1 Pound (0.4536 kg) of chlorine gas equals

1 Gallon (3.785 liters) 12% sodium hypochlorite solution

equals

15 Gallons (56.8 liters) 0.8% on-site generated sodium hypochlorite solution

equals

1.55 Pounds (0.676 kg) calcium hypochlorite (65%)

Calcium Hypochlorite

Advantages	Disadvantages
Very effective at typical pH	Difficult to dose unless dissolved first
Proven & reliable (Swimming pools)	Leaves a residual – potential for declor
Leaves a residual – potable water	Often used for small wastewater plants
	Reacts with ammonia
	Effectiveness decreases at high pH
Safety	Safety
Easily stored	Dust concerns
Stable as solid	Incompatibility with solvents
 Not highly regulated 	Safety issues often overlooked

Calcium Hypochlorite Safety Lesson

Spontaneous fire in SUV cause by calcium hypochlorite mixing with a solvent which caused the death of two children

Commercial Sodium Hypochlorite

Typical Sodium Hypochlorite Dosing Station

Commercial Sodium Hypochlorite Highlights

- Delivered to site in usable liquid form
- Delivered as 12-15% chlorine
- Major system
 components include
 1) storage tanks, 2)
 metering pumps 3)
 analytical
 instrumentation
- Use analyzer & flow meter to pace based on flow and demand

Commercial Sodium Hypochlorite

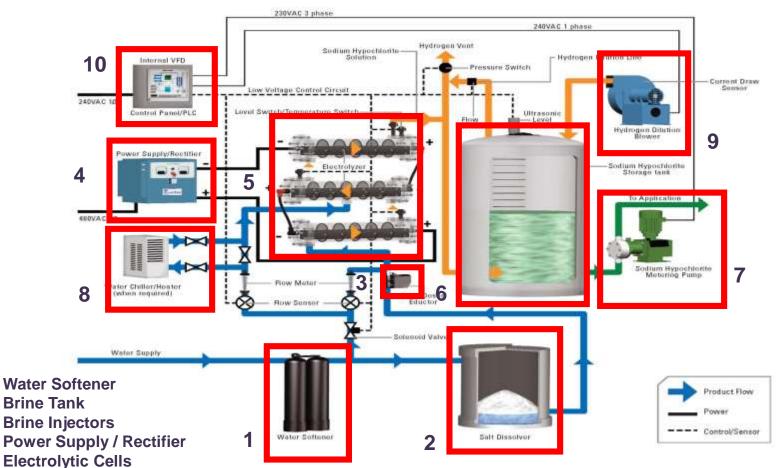
Advantages	Disadvantages	
Very effective at typical pH	Reacts with ammonia	
Proven & reliable	Effectiveness decreases at high pH	
Widely used for water & wastewater	Concentration decays quickly	
Leaves a residual	Chlorine by-product formation	
Simple chemical feed system	Leaves a residual - potential for declor	
Low capital cost	High cost per pound	
Safety	Safety	
Liquid safer/more familiar than gas	Can cause severe burns	
No make down required	Potential for off gassing	
 Not highly regulated 	 Hazardous material - secondary containment required 	
	Safety issues often overlooked	

On-Site Sodium Hypochlorite Generation

Typical 24 lb On-Site Hypochlorite Generation System

On-site Sodium Hypochlorite Highlights

- Delivered to site as salt
- Sodium hypochlorite produced on-demand with minimum storage
- 0.8 % sodium hypochlorite solution produced (Clorox 6%, Bulk 12.5%)
- Utilizes DC current, salt, water
- Storage tank and metered feed pumps (flow or residual paced)
- 3-5 days storage typical


On Site Sodium Hypochlorite Generation

$NaCI + H_2O + 2E = NaOCI + H_2$

- For each lb. equivalent of Cl2:
 - Salt (NaCl) 3.0 lbs
 - Softened Water 15 gal
 - Electrical energy 2 kWh DC
- **•** For each pound of Cl2 equivalent produced:
 - (15 gallons of 0.8% concentration Sodium Hypochlorite)
 - 1/35 lb. of H2 gas produced (5.6 ft3)
- H2 gas Immediately diluted upon production with air blower 100:1 to reduce H2 to 25% of LFL

On-site Sodium Hypochlorite Generation

6. NaOCI Tank

1.

2.

3.

4.

5.

- 7. NaOCI Dosing System
- 8. Water Chiller / Heater
- 9. Hydrogen Dilution system
- 10. Control Panel

On-Site Hypochlorite Generation System Schematic

On-site Sodium Hypochlorite Generation

On-Site Generated Sodium Hypochlorite

Advantages	Disadvantages
Very effective at typical pH	Reacts with ammonia
Proven & reliable	Effectiveness decreases-high pH
Often used for water & wastewater	THM Formation
Leaves a residual	Leaves residual - potential declor
Minimal concentration decay	More complex process than bulk
Low cost per pound	Higher capital cost than bulk
Safety	Safety
0.8% liquid safer than bulk	 Generates H2 gas which is vented to atmosphere
 Deliver & store salt. Small quantity of chlorine on-site 	Larger volume required
Not highly regulated	Can cause eye irritation and burns
 Secondary containment not required 	 pH lower than 12% hypochlorite

Chlorine Gas Feed Systems

Typical Chlorine Gas Feed System

Chlorine Gas System Highlights

- Delivered to site as gas in cylinders or containers or rail cars
- Stored on-site in original containers
- Chlorine removed form containers as liquid or gas
- Mixed with water prior to injection
- Automatic control valve controlled by residual analyzer or flow meter or compound loop

Gas Properties Comparisons

	Chlorine (Cl ₂)	Sulfur Dioxide (SO ₂)	Ammonia (NH ₃)
Detectable Odor:	1.0 PPM	3 - 5 PPM	5 PPM
Throat Irritation:	5.0 PPM	8 - 12 PPM	400 PPM
Coughing:	20 PPM	20 PPM	1700 PPM
Dangerous in 30 - 60 Min.:	40 - 60 PPM	400 - 500 PPM	2500 - 4500 PPM
Specific Gravity (Air=1.0):	2.49:1	2.26:1	0.596:1
Color:	Yellow-Green	Colorless	Colorless
Solubility in Water (Lbs/Gal) :	0.1216	1.9	4.417
Expansion Factor (Liquid/Gas):	1:457	1:73	1:146

Of the three gases, Chlorine (Cl₂) is the most commonly used in the water and wastewater industry, followed by Sulfur Dioxide (SO₂), and Ammonia (NH₃).

Recent Newspaper Headlines

If you have a gas leak, it will make the news

"Chlorine leak at Elm Bank contained"

"Chlorine gas leak controlled at water treatment plant"

"Chlorine Gas Leak in Arkansas Plant Prompts Evacuation of Workers June 28"

"Chlorine gas leak prompts late-night panic"

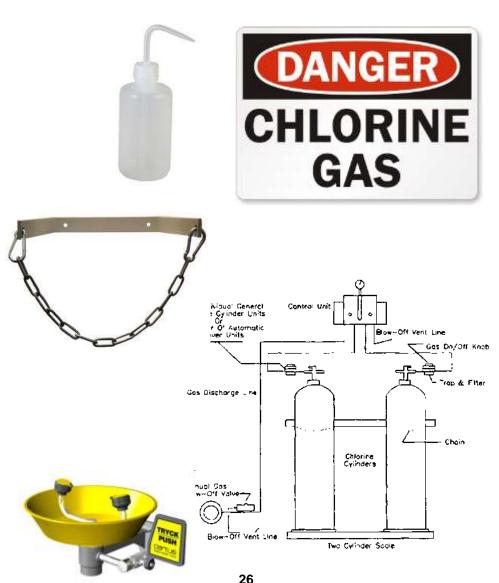
"Rogersville sewer plant gas leak contained"

"Chlorine gas leak at Wis. pool sickens 22"

"173 hospitalized in chlorine gas leak at Tyson plant"

Gas is Not Always Gas

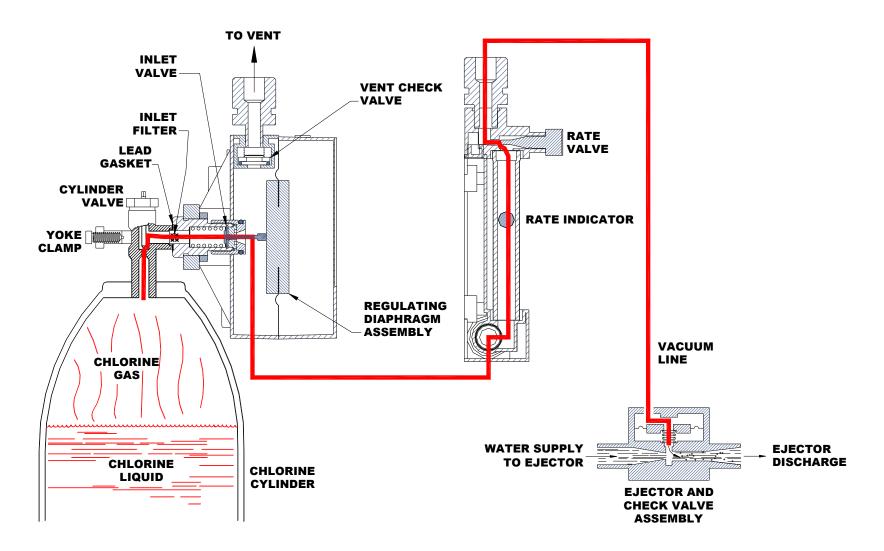
Tyson disputes findings on chlorine gas accident in 2011


Submitted by The City Wire Staff on Fri, 12/07/2012 - 9:20am

A language barrier is being blamed for the June 2011 chemical accident at Tyson Foods' Berry Street chicken processing plant in Springdale. Tyson Foods disputes the findings of a <u>federal report</u> by the Centers for Disease Control and Prevention's National Institute for Occupational Safety and Health report on the chlorine gas release that sickened nearly 200 workers, hospitalized 152 people last year. The CDC reported that the employee who poured sodium hypochlorite into a drum with residual acidic antimicrobial solution could only read Spanish, while the drum was labeled in English. The drum in question was a sample drum left near the sodium hypochlorite inadvertently, the CDC reported, and the acidic solution was normally stored in larger, square containers. The employee, who the CDC says required a Spanish translator for interviews, knew the chemical combination was dangerous but said he could not read the label. Tyson spokesman Worth Sparkman said Friday the worker responsible is not Hispanic and his primary language is English and had been properly trained about the hazardous chemicals.

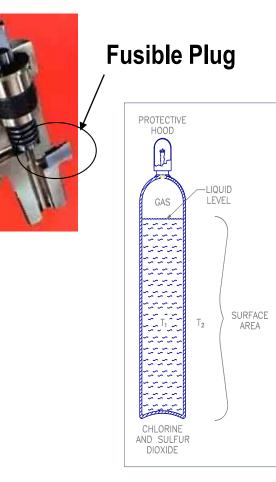
Your Father's Chlorine Gas Safety

- Pressurized systems
- Danger Signs
- Ammonia bottle to find leaks
- Cylinders vertical, containers horizontal
- Chain cylinders together
- Keep cool and away from combustibles
- 🕸 Eye wash



Modern Chlorine Gas Safety

- Significant technical advances
- Residual analyzer with feedback loop
- Non-pressurized vacuum systems
- Chlorine gas leak detector
- Alarm Systems / SCADA
- Automatic shut off valve
- Vega scrubber system for small leaks
- Scrubber system for gas containment
- Positive pressure breathing apparatus
- Specialized chlorine safety kits
- Fully automated system to contain leaks
- Federal, state and local regulations
- Written Emergency Procedures

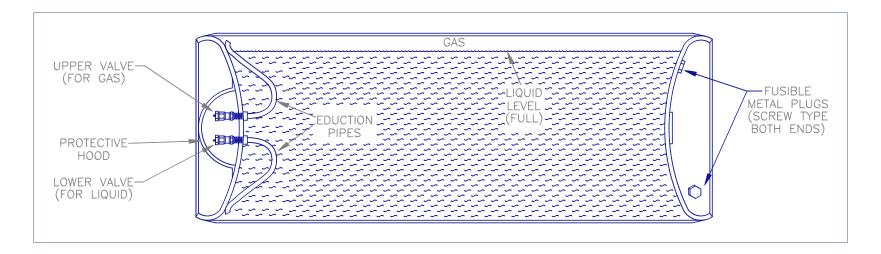


How Gas Vacuum Feeders Work

Chlorine Gas Storage Cylinders

Chlorine Gas Cylinders

Capacity 1 to 150 lb

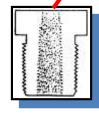

150 lb. predominate

One opening - valve connection

Standard cylinder valve with pressure relief device &fusible metal plug

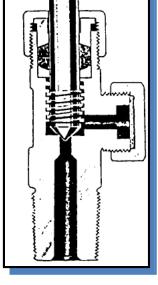
Fusible plug melts at 158-165°F

One - Ton Containers



- Capacity 2000 lb.
- Two identical valves
- Can use as gas feed (upper valve)
- Can use as liquid feed with vaporizer (lower valve)
- Six (6) fusible plugs three (3) in each end, melt at 158-165°F

ONE-TON CONTAINER LEAK SOURCES



Sides and Heads of Container Fusible Plugs and Feed Valves

Fusible Plug Core Fusible Plug Threads

Valve Packing Valve Seat Valve Threads – In & Out & Nut Broken Valve – usually at container thread

Chlorine Gas

Advantages	Disadvantages
Very effective at typical pH	Reacts with ammonia
Proven & reliable	Effectiveness decreases-high pH
 Widely used for water & wastewater 	THM Formation
Leaves a residual	Leaves residual - potential declor
Low capital cost	
 Low cost per pound 	
Safety	Safety
Smaller room area required	Gas phase dangers
Widely used in industry	Higher risk -catastrophic accident
 Significant advances in safety systems decrease risk 	 Highly regulated – OSHA, NFPA.USEPA, USDHS –
	More training & reporting requiredRisk management Plan

Chlorine Containment Systems

Typical Chlorine Containment Systems for Ton Container

Chlorine Containment Highlights

Steel shell containment system

Available for 150 lb. cylinders or one ton containers

Put in place – anchor bolt to floor

Gas connections on outside

Hinged door seals shut

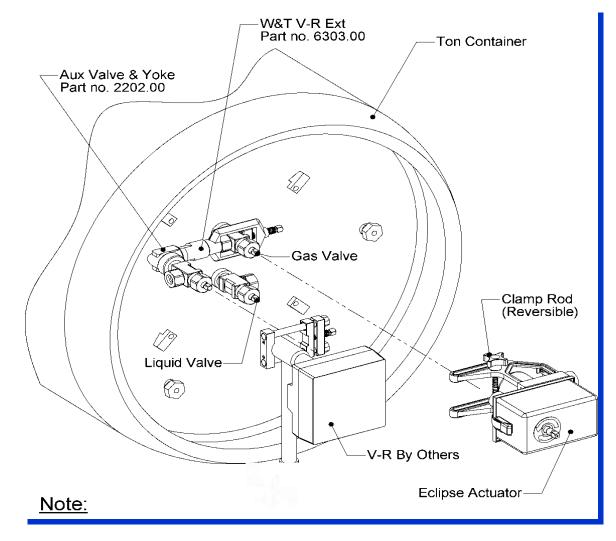
Chlorine Containment Systems -150# Cylinder

Typical 150 Lb Cylinder Containment System

Chlorine Containment Systems

Advantages	Disadvantages
Used for water or wastewater	Very expensive especially on large systems
Proven & reliable	One containment system required for each connection (cylinder or container)
Can reuse any chlorine captured	Extra time to change out cylinders or containers required
Does not shut feed system down upon leak	
Safety	Safety
Effective for leaks at tank	No protection from leaks in line
 No release of chlorine at all for leaks at tank 	Room not cleared of Chlorine
Can enter room after leak	

Automatic Valve Shut Off Systems



Automatic Actuator - 150 Lb Cylinder

Automatic Valve Shut off System Highlights

- Actuators mount directly to standard valve assemblies on ton containers and cylinders
- Fully automated system to automatically close the valves
- Can be activated by
 - Leak Detector
 - Panic or Emergency Button
 - SCADA and Fire Alarm System

Mounting the Emergency Actuator

Multi Tank System Automatic Shutoff System

Automatic Valve Shutoff Systems

Advantages	Disadvantages			
Fully automatic system	One system required for each tank in service			
 Simple to operate and maintain 	 Increases time to change out tank 			
 Available for cylinders and containers 				
Safety	Safety			
 Protect against line leaks 	 Does not protect against plug or tank failure 			
Completely automated	 Some gas leaks in room prior to automatic closure 			
 Battery operated – will operate in power outage 	Does not empty room of Chlorine			

Emergency Chlorine Scrubbers

Emergency Chlorine Scrubber Highlights

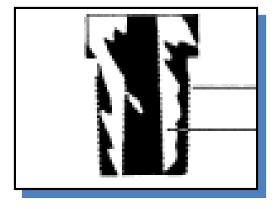
Wet or Dry Scrubbers Available

Major Components: 1) Instrumentation for activation 2) Exhaust Blower, 3) Treatment System 4) Vents to Atmosphere

Fully automatic – Start and stop based

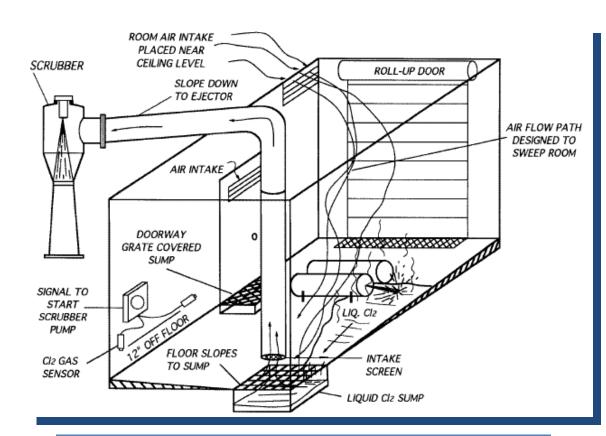
Chlorine Room Design Very Important

Typical Emergency Chlorine Scrubbers System


Emergency Chlorine Scrubber Design

FUSIBLE PLUG WORST-CASE

- Melts at approximately 160 °F
- Cl₂ at 80 °F = 117 psia vapor pressure
- Cl₂ at 160 °F = 325 psia vapor pressure
- 0.34" diameter orifice = 437 lbs/min at 160 °F
- Ton Container liquid plug empties ~ 5 minutes
- Design for release of 5 PPM chlorine


Keep room at negative pressure

- 437 lbs/min = 2380 scfm
- Trend is to specify 3,000 scfm systems for one-ton containers.
- 150 lb Cylinders: Gas Leak Rate is 20 lbs/min = 110 scfm
- Scrubber Rate: Typically 250 cfm

Gas Chlorine Room Containment Design

Typical Gas Chlorine Room

Room Containment Design Considerations

Chlorine gas is heavier than air

Must Contain gas and Liquid Chlorine

Pick up duct should be 12-18 inches above floor

Slope floors – confined corner sump

Step down doorways, gratings covered

Flood room to check for liquid escape routes

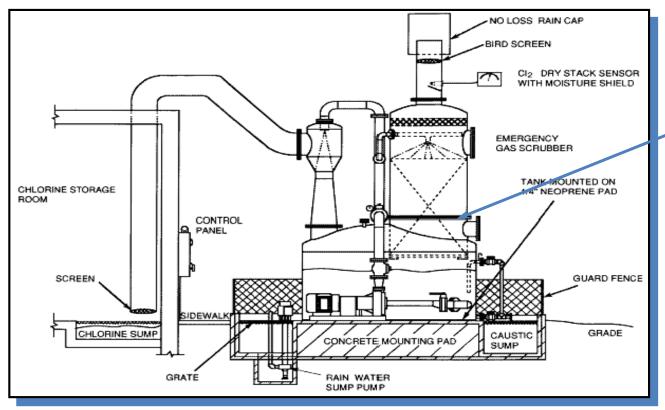
Gas Detector 12 inches off floor

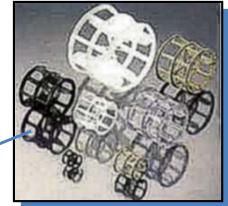
Dual Rooms – Dual Intakes

Emergency Chlorine Scrubbers - Types

Types of Emergency Chlorine Scrubber Systems

- **1. Wet Packed Emergency Chlorine Scrubber Systems**
 - Utilizes caustic to neutralize chlorine
 - $Cl_2 + 2 \text{ NaOH} \Rightarrow \text{NaOCl} + \text{NaCl} + H_2O + 628 \text{ BTU/lb } Cl_2(g)$
 - Upwards airflow, downwards chemical flow
 - Produces hazardous waste material


2. Wet Pack-less Emergency Chlorine Scrubber Systems


- Same chemical reaction as packed tower
- $Cl_2 + 2 \text{ NaOH} \Rightarrow \text{NaOCl} + \text{NaCl} + H_2O + 628 \text{ BTU/lb } Cl_2(g)$
- Utilizes ejector venturi
- Produces hazardous waste material

EJECTOR VENTURI SCRUBBER

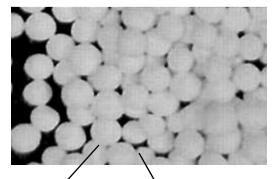
SCRUBBING LIQUID INLET Water or other liquid under pressure. SPRAY (MOTIVE) NOZZLE Breaks the scrubbing liquid into a high velocity spray for maximum entrainment of gases and impaction of particulates. GAS INLET Contaminated gases are drawn into the ejector by the action of the spray liquid. BODY Expanded chamber for the uniform distribution of gases. CONVERGING SECTION Designed to reduce internal pressure losses and assure uniform distribution of gases. VENTURI THROAT Designed for maximum gas-liquid contact. DIVERGING SECTION Designed for the maximum regain of unit pressure and for the agglomeration of the scrubbing liquid spray. GAS DISCHARGE Cleaned gases and scrubbing liquid discharge to a gas-liquid separator.

Emergency Chlorine Scrubbers

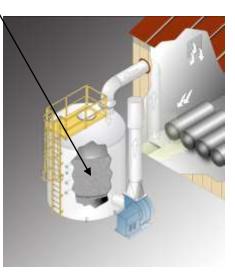
High Performance Packing Media

Typical Wet Ejector Venturi / Packed Tower

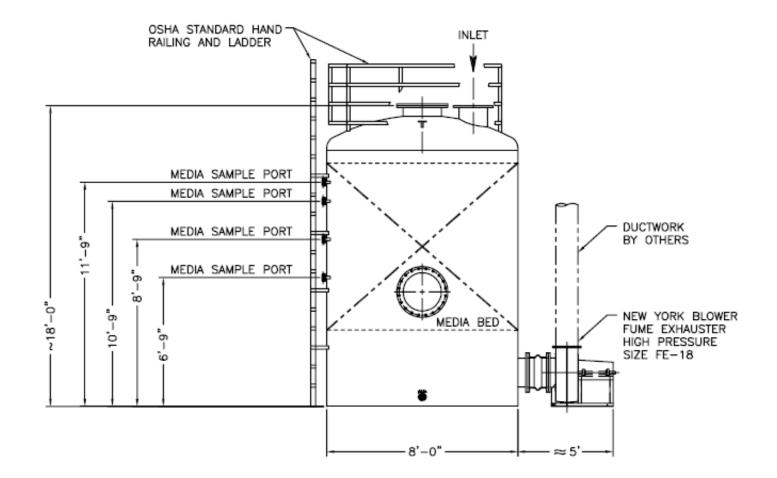
Emergency Chlorine Scrubbers - Types

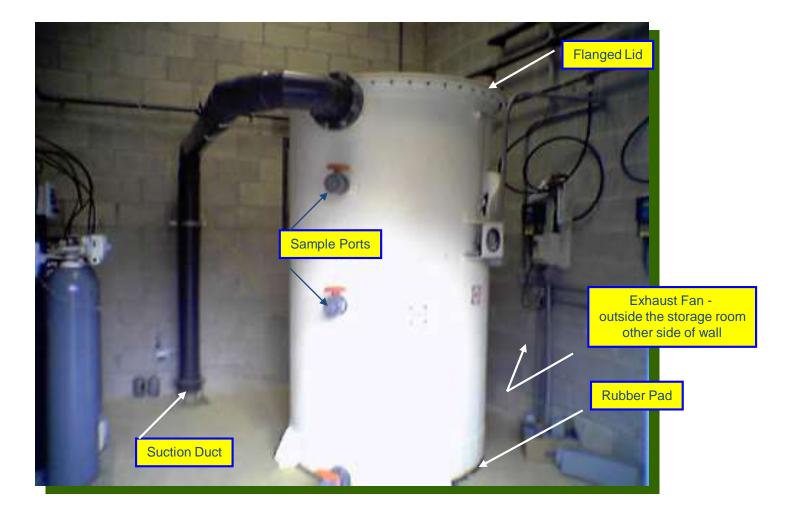

3. Dry Emergency Chlorine Scrubber Systems

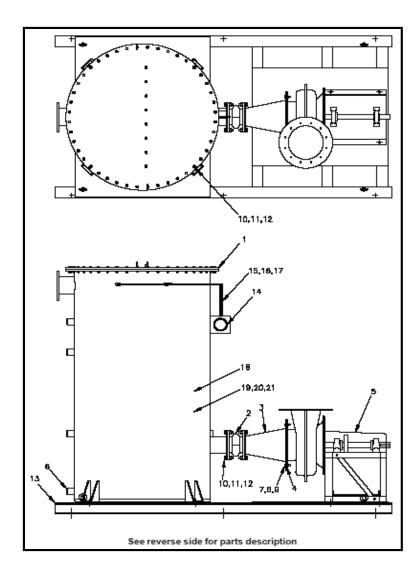
- Latest innovation in emergency scrubbers
- Utilize dry 4 mm impregnated activated alumina beads
- Cl2 + STS media \Rightarrow NaCl (Salt)
- No liquid chemicals required –media lasts forever
- Produces non-hazardous waste material landfill
- Automatic operation minimum maintenance


Dry Media Scrubber Features & Benefits as Compared to Traditional Caustic Scrubbers

- No chemical maintenance
- New as well as exhausted media is non-hazardous
- One moving part blower
- No chemical pumps
- Chemical leak containment is not required
- No heaters required in cold climates
- 🕸 Safe
- User-friendly
- Dependable operation
- Tested and certified
- Low cost of ownership




Type "STS" 4 mm impregnated activated alumina beads


Dry Media Scrubber (one ton container)

150 # Cylinder Scrubber Installed Inside Storage Room

Skid Mounted Dry Scrubber for 150 Lb Cylinder

Dry Scrubber Skidded Assembly

Scrubber Dry Media Refill

ervices 52

VENT EXHAUST GAS ARRESTOR

- Treat vacuum regulator vent line
- Reduces room corrosion and outside releases
- Five gallon HDPE disposable bucket
- Dimensions are 10" Square x 15" Tall
- Passive No fans required
- Pressure loss is less than same length of tubing
- Weighs 35 pounds with 'STS' 4 mm media beads
- Scrubs over 3 pounds of chlorine
- Media is non-toxic in fresh or spent forms
- Stackable for gas-side series mounting
- Visible Exhaustion Indicating Strips

Emergency Chlorine Dry Scrubbers

Advantages	Disadvantages			
Fully automatic systems	 Like insurance – often are never used because not needed 			
 Dry media scrubbers require minimum maintenance 	 Room design considerations 			
Medium capital cost				
 Cost benefit to using gas significant 				
Safety	Safety			
 Suggested by Ten States 	 Cannot enter room without safety equipment until cleared 			
Reduce liability significantly				
 Proven safe and reliable Completely empties room of Chlorine 				

Safety Option Matrix – Cost vs Benefit

Safety Option	Description	Capital Cost	O&M Costs	<u>Cost of</u> <u>Chlorine</u>	Room Coverage	Ease of Operation	Operator Safety
1	<u>Gas - Auto Value</u>	Low	Low	Low	Valve Only	Easy	Medium
2	<u>Gas – Container System</u>	High	Low	Low	Cylinder	Medium	Medium
<u>3</u>	<u>Gas- Wet Scrubber</u>	High	High	Low	Full Room	Medium	High
<u>4</u>	<u>Gas - Dry Scrubber</u>	High	Low	Low	Full Room	Easy	High
<u>5</u>	<u>Commercial Sodium</u> <u>Hypochlorite</u>	Low	Low	High	None	Easy	High
<u>6</u>	On-site Hypochlorite Generation	High	Medium	Medium	None	Easy	High

Summary

- Chlorine gas, commercial hypochlorite and on-site hypochlorite are all very effective methods of disinfecting wastewater
- Commercial hypochlorite avoids many of the safety issues associated with chlorine gas but the cost is significantly more per pound of chlorine and has safety issues of it's own
- On-Site hypochlorite generation also avoids many of the safety issues associated with chlorine gas but with a lower cost per pound of chlorine than commercial hypochlorite
- There are various methods to improve chlorine gas safety including containment systems, automatic shutoff valves and emergency scrubbers
- Dry media emergency scrubbers have significantly less operation and maintenance costs compared to wet scrubbers
- A life cycle cost analysis should be completed to properly assess the costs and benefits of each safety solution

Questions?

Contact: Gary M. Lohse, P.E. Technical Sales Manager - Disinfection De Nora Water Technologies 3000 Advance Lane Colmar, Pa 18915 Cell: (215) 859 - 3814 Email: gary.lohse@denora.com