Optimized Corrosion Control Treatment: Pilot-Scale Testing for Portland Water Bureau

Melinda Friedman, PE Alex Mofidi, PE Danbi Won, EIT **Confluence Engineering**

Michelle Cheek, PE **Portland Water Bureau**

2018 PNWS-AWWA **Annual Conference** Tacoma, Washington

517 NE 92nd St, Seattle, WA 98115 206.527.6832 www.confluence-engineering.com

2018 TACOMA PNWS-AWWA

Acknowledgements

- Portland Water Bureau
 - Michelle Cheek
 - Kim Gupta
 - Yone Akagi
 - Mac Gifford
 - Tom Krause

- Confluence
 - Alex Mofidi
 - Michael Hallett
 - Danbi Won
- HDR
 - Pierre Kwan

1 Corrosion Control Treatment (CCT) Pilot Testing Set Up and Caveats

2 Summary of Findings

3 Recommendations

4 Next Steps

Why Was Pilot Testing Recommended?

- Confirm bench results
- Determine if more definitive CCT "leader" could be identified
- Use harvested materials with native scales

PWB Corrosion Control Treatment (CCT) Pilot Plant Trailer

PWB Lab Trailer

CCT Pilot Set-Up

- Four water quality scenarios
 - Current Bull Run (pH 8.2)
 - Moderate pH/Alk (8.6/40)
 - Hi pH/lower Alk (9.0/20)
 - Orthophosphate (0.75-1 mg/L P)
- 2 types of testing rigs

Four "material" rigs, each containing three materials harvested from DS

- Brass meters
- Galvanized pipe
- Joints of copper pipe with lead solder

2 PRS stations – 4 coupon chambers

- Lead
- Copper with lead solder
- Galvanized
- Brass

PWB CCT Pilot Trailer – Material Rigs

PWB CCT Pilot Trailer – Process Research Solutions (PRS) Stations

4-Chamber PRS Station

Caveats When Interpreting CCT Pilot Data

- No direct equivalency toward LCR compliance monitoring
 □ e.g., 20 µg/L pilot result ≠ 20 µg/L in distribution system
- Cannot compare between rigs or materials— only within rig, for single material using different WQ endpoints
- Importance of Dissolved vs. Particulate
 - Dissolved lead is result of uniform, galvanic, (and perhaps microbial) influenced corrosion
 - Particulate lead associated with release of scale due to hydraulic disturbance, change in water quality, etc.

A Long Story Made Short....

Testing Condition

□ Originally pH 8.0 leaving LHTF previous to project □ Raised to pH 8.2 leaving LHTF at onset of project

- pH Reaching Site was Greater than Expected and Increased Over Time
 - Actual pH at pilot POE was much greater (~8.5) instant of 8.2
 - □ Chemical feed not practical (or necessary?)
 - Down-side (variable data, very low alkalinity/DIC, other....)
 - □ Increased stagnation period to 'force' lead release

Filtration!

2 Summary of Findings

Source water vs. Rig 1 Cu/Pb Solder Stagnation pH

Impact of Stagnation on pH

Bigger Picture Thoughts:

- Demonstrates limitations of WQP monitoring
- No way to pair/know residential tap pH conditions associated with LCR results
- Especially important in poorly-buffered waters

Impact of pH on Lead (harvested copper pipe with lead solder)

Samples dominated by particulate lead

Particulate Metals: Lead vs. Manganese and Iron

Pb MRL = 0.05 ug/L Mn MRL = 0.5 ug/L

Findings

- Expected Variability Between Materials
- Site conditions allowed for "passive" testing of moderate pH conditions
 - Approximately pH 8.5-8.6
 - Very low DIC water (no Alkalinity addition)
- Lead release typically >50% particulate
- Particulate release correlated with other metals, indicating scale disturbance/release
- Dissolved lead controlled primarily by end of stagnation pH
- Results Support Bench-Scale Tests
 - Moderate pH control suppresses Pb release in all materials
 - pH reduction with increasing stagnation period
- Acclimated PRS stations provide useful tool to understand metals release

Interim Pre-Filtration CCT Recommendation (IPF-CCT)

- pH ≥ 8.5 throughout distribution system
- Alkalinity $\geq 25 \text{ mg/L CaCO}_3$
 - Increase buffering capacity
 - Increase DIC

Chemical Selection and Location

- Completing evaluation of pH/alkalinity adjustment options
- To be located at Lusted Hill
- Submit IPF-CCT Report to State
- Design and construct
- Online in 2022

Determine CCT for Filtered PWB Water

- Use of coagulants and potential impacts on galvanic corrosion
- Removal of Natural Organic Matter (NOM)
 - Impacts on metals solubility and biostability
- Changes in disinfection strategies and impacts on ORP, biostability, etc
- Disinfection Byproduct Formation

517 NE 92nd St, Seattle, WA 981152008 - 1206.527.6832www.confluence-engineering.com

Samples dominated by particulate lead

Particulate Lead vs. Copper

Dissolved Lead vs. Manganese

