Options and Evaluations for Silica Removal City of Longview Water Supply System

Amy Blain, PE - City of Longview Brad Phelps, PE - Jacobs

April 26th, 2018

www.jacobs.com | worldwide

AGENDA

- History of Changing a Water Supply Source
 Surface Water to Groundwater 12 MGD
- Impacts to the Community
- Planning for the Next Future
- Silica Treatment Options

Why Change the Water Supply ? *Circa 2009/10*

- Summer water demand exceeded plant capacity
- Increased supply needed for future growth
- Cowlitz River sediment was increasing and problematic
- ✓ USACE Retention Structure began overflowing in 2006
- ✓ By 2008, Cowlitz reached sediment level predicted for 2039
- ✓ Vintage Fishers Lane WTP was failing
- Non-compliant intake structure needed regulatory upgrade

Fishers Lane Water Treatment Plant

Deteriorated plant:

- ✓ Constructed 1946; 60+ years old
- ✓ Failing concrete basins
- ✓ Multiple catastropohic filter failures
- Substantial repair / replacement needed

Spalling of Water Holding Structures

Ice formed outside Water Holding Structures (from leaks)

Intake issues

- In danger of running dry
- Frequent dredging required
- ✓ Did not meet fish code
- ✓ Pacific Smelt listed threatened (2010)
- Rigorous permitting process ahead

Cowlitz River Intake at Fishers Ln.

Supply Change

January 31, 2013

Water Quality Complaints

- ✓ Complaints began 3 mo. after start-up
 ✓ Zero CL2 in areas of cast iron mains
 Immediate City response:
 - Spot flush → Area flush
 - Coliform testing (no "hits")
 - WQ testing (SMCL's exceeded)
 - Emergency declaration

Water Quality Complaints

THE DAILY NEWS

Longview's Tap Water Residue is Here to Stay

Citizens Against Longview's New Water Supply 1,644 likes JACOBS

MILLING

Discolored Water Photos from Facebook Page

- Threats of class action lawsuits
- Fears of falling real estate values

Changes in pipe scale due to source water switch

NOW – What is that Stuff in the Water?

What is causing the white spotting?

- ✓ Hardness?
- ✓ Silica?
- ✓ Other evaporative solids?

Silica Evaporation Trials – Groundwater vs Bottled

Conclusion - Silica

Primary cause of spotting is naturally occurring silica

- Appears to etch surfaces if allowed to evaporate
- ✓ Aesthetic issue not experienced equally; varies with:
 - Type and age of glassware or surface
 - Amount of hand washing and hand drying
 - Dishwasher use, settings, detergents and rinse aids
 - Evaporation plus heat is most problematic
- Softening not likely to make significant improvement
- ✓ Silica removal very complex and expensive

Activities Since 2014

✓ 2014 – 2015 Community Developed Options Plan

- Survey Results Satisfaction Rating
 - ✓ Longview ---- 4.3 out of a possible 10
 - ✓ BHWSD ---- 4.9 out of a possible 10
- ✓ 2016 2017 Assessed Opportunity for Ranney Collector Wells along Cowlitz River (return to original source)
- 2017 2018 Determine Options for Silica Removal and implement Dissolved Oxygen treatment

Water Characterization Mint Farm Raw Water

Total	Metals Analy	ysis
Barium	µg/L	13.6
Boron	μg/L	<100 U
Calcium	µg/L	33,000
Iron	µg/L	957
Magnesium	µg/L	9,140
Manganese	µg/L	630
Potassium	µg/L	3,960
Silica	µg/L	56,900
Sodium	µg/L	11,700
Strontium	µg/L	93.2
Hardness, Ca	mg/L as CaCO₃	82.4
Hardness, Mg	mg/L as CaCO₃	37.6
Hardness, total	mg/L as CaCO₃	120

General Chemistry Analysis					
Alkalinity, total	mg/L as CaCO₃	47.3			
Alkalinity, bicarbonate	mg/L as CaCO₃	<5.00 U			
рН	Units	7.45			
Turbidity	NTU	3.78			
Conductivity	µS/cm	296			
Total Dissolved Solids	mg/L	211			
Ammonia	mg/L-N	0.16			
Nitrate	mg/L-N	<0.010 U			
Nitrite	mg/L-N	<0.010 U			
TKN	mg/L-N	0.52			
Chloride	mg/L	28.4			
Sulfate	mg/L	1.08			
Fluoride	mg/L	<0.20 U			
TOC	mg/L	1.52			
Reactive Silica	mg/L	59.0			

Silica Removal Options Evaluated

Lime Softening
 Sodium Aluminate
 Reverse Osmosis
 Electrocoagulation

Lime Softening (to increase pH)

75 mg/L CO_2 needed for recarbonation to pH 7.8 Final Hardness 82 mg/L as CaCO3

Silica Removal with Lime Softening Only (No Magnesium Chloride Addition)

Reaction Time for Silica Reduction (Lime Softening at pH 11 & Magnesium Chloride at 50mg/L)

Sodium Aluminate without pH Adjustment

Alum without pH Adjustment

Sodium Aluminate or Alum Dose pH Maintained between 8.0 and 8.2

RO Removal of Silica

Would allow 20% to 25% Blend of Feed Water with Permeate

Electrocoagulation Results (AI to AI(SO₄)₃*H₂O multiplier is 13.8)

Capital and O&M Costs 12 MGD

	RO	Lime	NaAl	EC+AI
Power	\$328,500	\$15,549	\$5,037	\$76,650
Labor	\$80,000	\$80,000	\$80,000	\$80,000
Chem & Consumables	\$11,103	\$417,341	\$341,275	\$3,960,980
R.O. Replacement	\$440,000			
O&M	\$859,603	\$512,890	\$426,312	\$4,117,630
Capital	\$29,500,000	\$8,900,000	\$8,300,000	\$10,100,000
pmt 4%	\$2,170,661	\$654,877	\$610,728	\$743,175
\$/ERU/MO	\$9.02	\$3.48	\$3.09	\$14.47

City's Current Choices:

Implement Dissolved Oxygen Treatment

Review Need for Silica Removal at a Later Date

PRESENTATION END

