Willamette Water Supply Our Reliable Water

2018 TACOMA PNWS-AWWA

Taking a test drive – How physical modeling can help achieve optimal performance and maximize existing infrastructure

April 26, 2018

Acknowledgements

- Mike Britch, P.E. WWSP
- Matthew Gribbins, P.E. WWSP
- Darren Hinton, P.E., Ph.D NHC
- Thomas Demlow, M.S., P.E. NHC

Agenda

- Project background
- Physical model testing plan
- Results
- Conclusions and next steps

PROJECT BACKGROUND

WWSP Program Components

- Modified water intake
- New water filtration plant
- Water reservoirs
- 30+ miles of large diameter pipeline

Raw Water Facilities (RWF_1.0) Background

Expansion of existing raw water facilities at the WRWTP

RWF Project Timeline

Existing Infrastructure Sized for Expansion

SECTION A 1/4"•1'-0" 2M-01

Existing Raw Water Pump Station

Physical Modeling Provides Confidence to System Owners

- Original capacity of 120 mgd
- Desired capacity of 150 mgd
- CFD modeling indicates pumps do not meet all Hydraulic Institute (HI) metrics
- Potential solution identified
- HI ANSI 9.8 recommends physical model for pump station with flows over 100,000 gpm or 144 mgd

Computational Fluid Dynamic Modeling of Proposed Upgrade

- Used for preliminary hydraulic evaluation
- Found no fatal flaws with pump intake hydraulics

Constraints of Existing Infrastructure

- Existing plant must maintain operations
- Need seismically resilient solution
- Structural changes are challenging

illamette Water Supply

Pre-Work to Inform Physical Model

- Survey of existing infrastructure
- Calculation of screen losses

PHYSICAL MODEL TESTING PLAN

Objectives

- Determine if wet well provides satisfactory approach flow that meets 2012 ANSI/Hydraulic Institute (HI) 9.8 Pump Intake Design Standard
- If approach flow does not meet the HI Standard, then develop modifications to produce acceptable flow to the pumps

Check Hydraulic Institute Standards for Problematic Pump Intake Conditions

- Vortex formation
- Air entrainment
- Pre-swirl
- Non-uniform velocity distribution at impeller
- Excessive turbulence at impeller

Hydraulic Conditions Evaluated with a Scale Physical Model

- Model Recommendations
 - Free Water Surface:
 - >100,000 gpm total flow
 - >40,000 gpm pump flow
 - >5,000 gpm pump flow circular wetwell
 - Closed Conduit Pump Applications:
 - >5,000-10,000 gpm pump flow
- Model Scale Requirements:
 - F = 1:1
 - E: OK if R and W met
 - $R > 6.4x 10^{2}$
 - W > 240

- v = kinematic fluid viscosity
- σ = surface tension of the fluid

HI Model Pump Performance Criteria

- Velocity within ±10% of mean at pump throat
- Turbulence intensity less than 10%
- Flow swirl less than 5 degrees from axial
- Minimal vortex activity

1 to 5 Scale Selected Based on Typical Pumps for the Planned Operation

- 26-inch Bells at 13.3 mgd
- 31-inch Bells at 19.5 mgd

Pump	Reynolds (bell)	Weber
Willamette 28MKM	1.1 x 10 ⁵	1,330
Willamette 23TKH	1.0 x 10 ⁵	1,320
Willamette 23TKM	9.0 x 10 ⁴	1,040

Model Layout

Model Layout

Model Construction

		Water Level in Wet	Operating Pumps, mgd										Total Pump Station		
Te	st No.	Wen	Wet Well												
		(ft)	28MKM1	28MKM2	28MKM3	28MKM4	28MKM5	23TKH1	23TKH2	23TKH3	23TKM1	23TKM2	(mgd)		
ing	ID1	52.7	-	19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	150.0		
Test	ID2	52.7	-	18.00	18.50	18.50	18.50	13.30	13.30	13.30	13.30	13.30	140.0		
esign	ID3	55.0	-	-	-	-	10.00	-	-	7.50	-	7.00	24.5		
ial D	ID4	52.7	-	-	-	-	19.60	-	-	15.00	13.30	-	47.9		
Init	ID5	52.7	19.60	19.60	19.60	-	19.60	15.00	15.00	15.00	13.30	13.30	150.0		
Design Development Testing ^b	DD	52.7	-	19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	150.0		
nate Capacity Testing	UC1	TBD ^c		In	itia	l de	sign	tes	sting	30	13.30	13.30	140.0		
Ultin	UC2	52.7	-				.9.			00	13.30	13.30	TBD ^d		
	FD1	52.7		19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	150.0		
	FD2	52.7	19.60	19.60	19.60	-	19.60	15.00	15.00	15.00	13.30	13.30	150.0		
50	FD3	52.7	19.60	-	19.60	19.60	19.60	15.00	15.00	-	13.30	13.30	135.0		
estin	FD4	55.0	19.60	-	19.60	19.60	19.60		15.00	15.00	13.30	13.30	135.0		
on T	FD5	52.7	19.60	-	-	19.60	19.60	15.00	15.00	-	-	13.30	102.1		
ntati	FD6	52.7	19.60	19.60	-	-	19.60	15.00	15.00	-	-	13.30	102.1		
me	FD7	52.7	19.60	-	19.60	-	-	-	15.00	-	-	13.30	67.5		
al Doi	FD8	52.7	-	-	19.60	-	19.60	-	-	15.00	13.30	-	67.5		
Fine	FD9	52.7	-	-	19.60	19.60	-	-	15.00	-	-	-	54.2		
	FD10	55.0	-	-	-		10.00	-	-	7.50	-	7.00	24.5		
	FD11	52.7	Max	Max	Max	Max	Max	-	-	-	-	-	131.0		
	FD12	55.0	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max		

Test No.		Water Level in Wet	Wet Operating Pumps, mgd T										Total Pump Station
		wen											Discharge
		(ft)	28MKM1	28MKM2	28MKM3	28MKM4	28MKM5	23TKH1	23TKH2	23TKH3	23TKM1	23TKM2	(mgd)
Testing ^a	ID1	52.7	-	19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	150.0
	ID2	52.7	-	18.00	18.50	18.50	18.50	13.30	13.30	13.30	13.30	13.30	140.0
ssign	ID3	55.0	-	-	-	-	10.00	-	-	7.50	-	7.00	24.5
al De	ID4	52.7	-	-	-	-	19.60	-	-	15.00	13.30	-	47.9
Initi	ID5	52.7	19.60	19.60	19.60	-	19.60	15.00	15.00	15.00	13.30	13.30	150.0
Design Development Testing ^b	DD	52.7		19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	150.0
nate Capacity Testing	UC1	TBD ^c	-	18.00	18.50	18.50	18.50	13.30	13.30	13.30	13.30	13.30	140.0
Ultir	UC2	52.7	-	19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	TBD ^d
	FD1	52.7		19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	150.0
	FD2	52.7		1	I	I	1	1	1	1		13.30	150.0
50	FD3	52.7		•				•		•		13.30	135.0
estin	FD4	55.0	1)00	ςιση	de)	vein	nm	ent	Tesi	ring		13.30	135.0
on T	FD5	52.7			MC							13.30	102.1
ntati	FD6	52.7	13.00	19.00	-	-	13.00	10.00	10.00	-		13.30	102.1
me	FD7	52.7	19.60	-	19.60	-	-	-	15.00	-	-	13.30	67.5
Doc	FD8	52.7	-	-	19.60	-	19.60	-	-	15.00	13.30	-	67.5
Fina	FD9	52.7	-	-	19.60	19.60	-	-	15.00	-	-	-	54.2
	FD10	55.0	-	-	-	-	10.00	-	-	7.50	-	7.00	24.5
	FD11	52.7	Max	Max	Max	Max	Max	-	-	-	-	-	131.0
	FD12	55.0	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max

		Water Level in Wet	Operating Pumps, mgd										Total Pump Station	
Te	est No.	weii	Wet Well										Discharge	
		(ft)	28MKM1	28MKM2	28MKM3	28MKM4	28MKM5	23TKH1	23TKH2	23TKH3	23TKM1	23TKM2	(mgd)	
ing"	ID1	52.7		19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	150.0	
Test	ID2	52.7		18.00	18.50	18.50	18.50	13.30	13.30	13.30	13.30	13.30	140.0	
esign	ID3	55.0	-	-	-	-	10.00	-	-	7.50	-	7.00	24.5	
ial De	ID4	52.7	-	-	-	-	19.60	-	-	15.00	13.30	-	47.9	
Init	ID5	52.7	19.60	19.60	19.60	-	19.60	15.00	15.00	15.00	13.30	13.30	150.0	
Design Development Testing ^b	DD	52.7	-	19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	150.0	
nate Capacity Testing	UC1	TBD ^c		18.00	18.50	18.50	18.50	13.30	13.30	13.30	13.30	13.30	140.0	
Ultin	UC2	52.7	-	19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	TBD ^d	
	PDI	52.7	-	19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	150.0	
	FD2	52.7		1	1				1	1	1	13.30	150.0	
	FD3	52.7		•	-		• •	-	. •		_	13.30	135.0	
sting	FD4	55.0		ıma	te r	ana	CITV	' tec	ting	Γ	_	13.30	135.0	
on Te	FD5	52.7		IIIIG		upu	CILY				_	13.30	102.1	
ntatio	FD6	52.7	13.00	15.00		-	13.00	13.00	10.00	-		13.30	102.1	
ame	FD7	52.7	19.60	-	19.60	-	-	-	15.00	-	-	13.30	67.5	
Doc	FD8	52.7	-	-	19.60	-	19.60	-	-	15.00	13.30	-	67.5	
Fina	FD9	52.7	-	-	19.60	19.60	-	-	15.00	-	-	-	54.2	
	FD10	55.0	-	-	-	-	10.00	-	-	7.50	-	7.00	24.5	
	FD11	52.7	Max	Max	Max	Max	Max	-	-	-	-	-	131.0	
	FD12	55.0	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	

Test No.		Water Level in Wet	et Operating Pumps, mgd										Total Pump Station	
		wen	Wet Well											
		(ft)	28MKM1	28MKM2	28MKM3	28MKM4	28MKM5	23TKH1	23TKH2	23TKH3	23TKM1	23TKM2	(mgd)	
"Bu	ID1	52.7	-	19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	150.0	
Test	ID2	52.7	-	18.00	18.50	18.50	18.50	13.30	13.30	13.30	13.30	13.30	140.0	
esign	ID3	55.0											24.5	
ial D	ID4	52.7												
Init	ID5	52.7		itne	acc t	'ACT	toll	n\//	h ha	Δ		13.30	150.0	
Design Development Testing ^b	DD	52.7	_ VV _ D/	Decumentation testing										
nate Capacity Testing	UC1	TBD ^c		JCUI	nen	ILALI			ing			13.30	140.0	
Ultin	UC2	52.7		19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	TBD ^d	
	FD1	52.7		19.60	19.60	19.60	19.60	15.00	15.00	15.00	13.30	13.30	150.0	
	FD2	52.7	19.60	19.60	19.60	-	19.60	15.00	15.00	15.00	13.30	13.30	150.0	
	FD3	52.7	19.60	-	19.60	19.60	19.60	15.00	15.00	-	13.30	13.30	135.0	
sting	FD4	55.0	19.60	-	19.60	19.60	19.60		15.00	15.00	13.30	13.30	135.0	
on Te	FD5	52.7	19.60	-	-	19.60	19.60	15.00	15.00	-	-	13.30	102.1	
ntati	FD6	52.7	19.60	19.60	-	-	19.60	15.00	15.00	-	-	13.30	102.1	
amn	FD7	52.7	19.60	-	19.60	-	-	-	15.00	-	-	13.30	67.5	
Doc	FD8	52.7	-	-	19.60	-	19.60	-	-	15.00	13.30	-	67.5	
Fina	FD9	52.7	-	-	19.60	19.60	-	-	15.00	-	-	-	54.2	
	FD10	55.0	-	-	-	-	10.00	-	-	7.50	-	7.00	24.5	
	FD11	52.7	Max	Max	Max	Max	Max	-	-	-	-	-	131.0	
	FD12	55.0	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	

RESULTS

Initial Test Results - Swirl

- Flow pre-swirl too high
 - 12° average, 14° maximum
 - Effective rotation difference leads to cavitation
 - Deviation from best efficiency point

Initial Test Results, Continued

- Strong Type 2 Vortex Formation
 - Low pressure point leads to localized cavitation
 - Potential air entrainment

Initial Test Results - Velocity and Turbulence

- Velocity distribution is OK
- Excessive turbulence at impeller
 - Up to 26%
 - Shaft and bearing problems
 - Cavitation
 - Impeller blade fatigue

Recommended Improvements

- Flow conditioning baskets
 - Uniform flow entering pump
 - Optimization of pump performance
 - HI criteria met

illamette Water Supply

Rolinhle Water

- Extend equipment life
- Limited shutdown for installation

RWF_1.0 Physical Model Witness Test

Flow Conditioning Baskets Addressed Pump Hydraulics

- Vortex's eliminated
- Swirl reduced to maximum of 3°
- Maximum turbulence reduced to 10%
- Maximum Capacity of 196 mgd tested
- Additional Bell Sizes Tested

CONCLUSIONS AND NEXT STEPS

Conclusions and Next Steps

- Physical modeling provided needed flow validation for system Owners
- Optimization of existing infrastructure beyond original anticipated capacity
- Basket details will be included in final design suitable for a range of pumps

Thank you!

Ed Wicklein Carollo Engineers, Inc. Ewicklein@carollo.com

2018 TACOMA PNWS-AWWA

Jenn Minton Raw Water Facilities Project Manager Willamette Water Supply Program 503-941-4585 <u>info@ourreliablewater.org</u>

www.ourreliablewater.org

You Tube