The Facts about Water Tank Diving Evaluations

Jennifer Coon, CSP, CHMM., CET
Safety Director
Tank Industry Consultants

OSHA Regulation

U.S. DEPARTMENT OF LABOR

Occupational Safety and Health Administration

DIRECTIVE NUMBER: CPL 02-00-151

EFFECTIVE DATE: June 13, 2011

SUBJECT: 29 CFR Part 1910, Subpart T – Commercial Diving Operations

Contributing Factors Diver Fatalities - 2008 to 2013

Ranked in Order of Frequency

- Insufficient Number of Dive Team Members
 - 2008 to 2013 54 Diver Fatalities
 - 24 Due to Insufficient Number of Dive Team Members
- 2. Physical Condition of Diver

Office of Maritime Enforcement
Steve Butler
February 2014

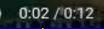
Contributing Factors Diver Fatalities - 2008 to 2013

Ranked in Order of Frequency

- 3. Equipment Malfunction
 - Leading Cause of Malfunction Improper Maintenance
- 4. Training Deficiencies
 - Failure to Recognize and Avoid Underwater Hazards
 - Poor Response when Hazards Encountered
- 5. Differential Pressure

Office of Maritime Enforcement
Steve Butler
February 2014

Contributing Factors Diver Fatalities - 2008 to 2013


Ranked in Order of Frequency

- 6. Entanglement
- 7. Entrapment
- 8. Explosion
- 9. AGE (arterial gas embolism) / Decompression Sickness

Office of Maritime Enforcement
Steve Butler
February 2014

Qualifications — What to Ask

- Divers' qualified to perform water tank and coating evaluations
- Divers' properly certified
- □ Divers' training records
- Copies of Company and Personal Dive Logs
- □ Divers' retain current CPR/1st Aid/O2 administration training
- Divers' have current Accident Management Training
- Examples of previous site-specific dive plans available

Qualifications — Know Water Tanks?

Selecting a Storage Tank Engineer/Inspector

AWWA M42

- Registered Professional Engineer with
 - extensive experience in water storage tank engineering and inspection
 - experienced personnel

Selecting a Storage Tank Engineer/Inspector

- Extensive knowledge of
 - industry standards
 - traditional engineering disciplines
 - specialized training
 - tank construction practices
 - surface cleaning and cleanliness standards

Selecting a Storage Tank Engineer/Inspector

- Effective communications skills to
 - interpret specifications
 - resolve potential issues
- Climbing abilities and knowledge of
 - proper rigging
 - safety practices
 - respect for heights

Dive Fatality

- ☐ Braintree, Massachusetts
- □ December 16, 2016
- ☐ Air supply to diver cut off unexpectedly
- Crew unable to pull him out of the water
- □ Spotter entered water but also became trapped and required rescue

Tank Industry Consultants

OSHA Requires Verification of Competency

Qualifications Diver Properly Certified?

Qualifications Company and Personal Training Records

Tank Industry Consultants

Dive Logs

- □ Should be 2 types "COMPANY" and "PERSONAL"
- □ Must be current
- □ List at least last 12 months of dive activity
- □ Ensure dive experience is real
- □ Verify that personnel are not subject to unsafe dive practices

Dive Logs

Date:	Tank Name:		
Job No.:			Hambert Control
Tank Location:			
	Dive #1	Dive #2	Dive #3
Diver's Name:			
Previous Dive RG:			
Surface Interval:			200000
Repetitive Factor (RF) In:			
Max. Depth:	11.000000000000000000000000000000000000		
Left Surface:			· · · · ·
Reach Bottom:			
Leave Bottom:			
Reach Surface:			10.1-0.00
Deo: Depth/Time:			

Qualifications Accident Management Training

Divers Alert Network

Tank Industry Consultants

Qualifications CPR/1st-Aid/O2

Qualifications Dive Plans

Site-Specific Dive Plan

- Anticipated High-Risk Activities
- □ Crew Roles and Responsibilities
- □ Required Equipment
- Emergency Planning
- □ Locations of Nearest Hospitals and Monoplace Hyperbaric Chambers
- □ Safety Data Sheets (SDS)
- □ Address other safety hazards

High-Risk Activities

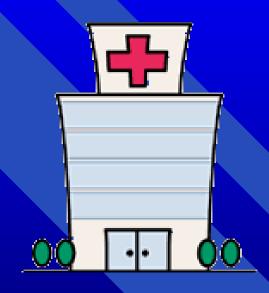
Tank Industry Consultants

Crew Roles and Responsibilities

Team Size

Tank Industry Consultants

Required Equipment


Equipment Check List

- □ Two-Way Communication Radios w/ Tether Line
- Buoyancy Compensators (BCD)
- Personal Fall Arrest Equipment
- □ Full Face Masks
- Dry Suits
- ☐ Main Air Tanks, Emergency Air Tanks, BCD Air Tanks
- Dive Tables
- Weights
- □ Bag-Type Manual Resuscitate w/ Mask and Tubing
- □ Emergency O2 Tank
- □ Tarps
- □ Raft
- Disinfectant
- Safety Goggles
- Chemical Gloves

Emergency Planning

Nearest Hospital and Monoplace Hyperbaric Chamber

Safety Data Sheet (SDS)

SAFETY DATA SHEETS

Tank Industry Consultants

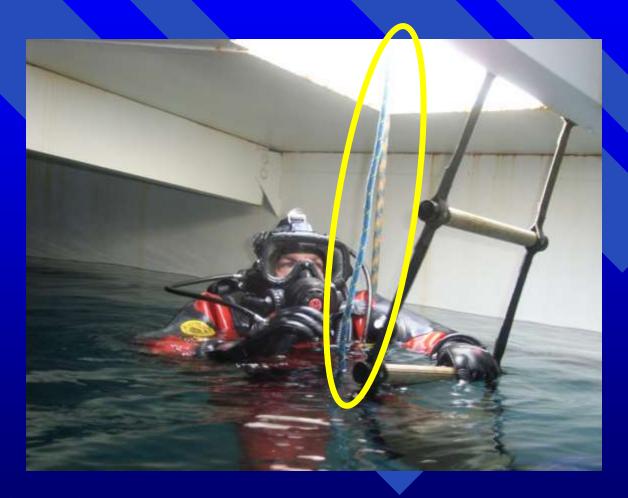
Permit-Required Confined Space

Permit-Required Confined Space

- Written program
- □ Employee training
- □ Designated crew roles/responsibilities
- Emergency response
- Permits
- □ Continuous air monitoring

Logout/Tagout

Tank Industry Consultants



Tank Industry Consultants

Disinfection

Disinfection

Exterior Ladders

Condition of Interior Ladders

Working at Heights

Physical Hazards

- **■** Illumination
- □ Heat Stress
- □ Cold Stress
- □ Material Hoisting and Lifting Procedure
- □ Handling Air Cylinders

Tank Industry Consultants

Tank Industry Consultants

Decompression/Time and Air

DCIEM SPORT DIVING TABLES

De	pth		-Decor				mpress Bottom		
50.	6m	30 A 60 B 90 C 120 D	150 E 180 F 240 G 300 H	360 I 420 J	720 M				
30'	9m	30 A 45 B 60 C 90 D	100 E 120 F 150 G 180 H	210 J 240 K 270 L	300 M	360	400		
40"	12m	22 A 30 B 40 C	60 D 70 E 80 F	90 G 120 H 130 I	150 J	160 K 170 L	180 M 190	200	215
50"	15m	18 A 25 B	30 C 40 D	50 E 60 F	75 G	85 H 95 I	105 J 115 K	124 L	132 M
60"	18m	14 A 20 B	25 C 30 D	40 E	50 F	60 G	70 H 80 I	85 J	92 K
Dec	in n	ession inutes	Stops	at 1	0° 3m	5	10	15	20
70	21m	12 A 15 B	20 C	25 D	35 E	40 F	50 G	60 H 63 I	66 J
80"	24m	10 A 13 B	15 C	20 D	25 E	29 F	35 G	48 H	521
90"	27m	9 A	12 B	15 C	20 D	23 E	27 F	35 G	40 H 43 I
100"	30m	7 A	10 B	12 C	15 D	18 D	21 E	25 F 29 G	36 H
110	33 m		6 A	10 B	12 C	15 D	18 E	22 F	26 G 30 H
120	36m	5	6A	88	10 C	12 D	15 E	19 F	25 G
130	39m			5 A	88	10 C	13 D	16 F	21 G
140	42m			5A	7.B	9 C	11 D	14 F	18 G
150	45m			4 A	6 B	8 C	10 D	12 E	15 F
Dec			Stops	at 2	0' 6m	-		5	10
	in n	ninutes	13	at 1	m1, "0	5	10	10	10

- . ASCENT RATE is 50' (15m) plus or minus 10' (3m) per minute
- . NO-DECOMPRESSION LIMITS are given for first dives
- . DECOMPRESSION STOPS are taken at mid-chest level
- → Table B for Minimum Surface Intervals
- → Table C for Repetitive Dive No-Decompression Limits
- → Table D for Depth Corrections required at Altitudes above 1000' (300m)

The Department of National Defence (Canada), Defence and Civil Institute of Environmental Medicine (DCHIM), and Universal Dev Technonics, Inc. (UCIT, darkers any sel all responsibilities for the use of the DCHIM Sport Driving Tables and procedures.

(I) He Mayory The Quant in Again of Canada 1994, 1995.

Rep. Group	0:15	0:30 M 0:59	1:00	1:50	2:50 2:50	2:00	5.50	6:00 8:40	9:00 11:50	12:00	18:00
A	1.4	1.2	1.1	1.1	1.1	1.1	1,1	1.1	1.0	1.0	1.0
В	1.5	1.3	1.2	1.2	1.2	1.1	1.1	1.1	1.1	1.0	1.0
C	1.6	1.4	1.3	1.2	1.2	1.2	1.1	1.1	1.1	1.0	1.0
D	1.8	1.5	1.4	1.3	1.3	1.2	1.2	1.1	21.15	1.0	1.0
E	1.9	1.6	1.5	1.4	1.3	1.3	1.2	1.2	1.1	1.1	1.0
F	2.0	1.7	1.6	1.5	1.4	1.3	1.3	1.2	chile	1.1	1.0
G		1.9	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.1	1.0
н			1.9	61.Pr#	1.6	1.5	1,4	1.3	1.1	311	1.1
-1		-	2.0	1.8	1.7	1.5	1.4	1.3	1.1	1.1	1.1
J	12410		- 20	1.9	1.8	1.6	1.5	1.3	1.2	1.1	1.1
К				2.0	1.9	1.7	1.5	1.3	1.2	1.1	1.1
L	-+	- *		+	2.0	1.7	1.6	1.4	1.2	1.1	1.1
М						1.8	1.6	1,4	1.2	1,1	1.1

De	Depth		1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
30"	9m	272	250	230	214	200	187	176	166	157	150
40"	12m	136	125	115	107	100	93	88	83	78	75
50"	15m	60	55	50	45	41	38	36	34	32	31
60,	I8m.	40	35	31	29	27	26	24	23	22	21
70"	21m	30	25	21	19	18	17	16	15	14	13
80"	24m	20	18	16	15	34	13	12	12	11	11
90"	27m	16	14	12	11	11	10	9	9	8	8
100"	30m	13	-11	10	9	9	8	8	7	7	7
110"	JJm	10	9	8	8	7	7	6	6	6	6
120	36m	8	7	7	6	6	6	5	5	5	5
130"	39m	7	6	6	5	5	5	4	4	4	4
140	42m	-6	5	5	5	-4	4	4	3	3	3
150"	45m	5	5	4	4	4	3	3	3	3	3

Actual	10	1999	2000		3000° 4 3999		4000		5000		6000'		7000'		8000°		
Depth 4	300	300m		600m		900m		1200m		7500m		7800at La 2099		2760m		2400m	
30" 9m 40" 12m 50" 15a	10 10 10	3	10 10 10	1	10 10 10	3 3	10	3	100	1	1000	6	2020	6	888	6 6	
60° 184 70° 214 80° 244	10 10 10	3	10 10 10	1	10 10 20	1	2020	6	2022	6	202230	6 9	20 30	9	1932	9 12	
90' 27a 100' 30a 110' 33a	10	3	10 10 20	1	20 20 20	6	20 20 20	6	20 30 30	9	30 30 30	9 9	30 30 40	9 12	40 40	12	
20° 36a 130° 39a 140° 42a	10	1	20 20	6	20 20	6	30	9	30	,	30	9		Ĩ			
	- 1	dd D	ept	h Cor	rect	ion t	o Ac	tual	Dec	oth of	Alti	tude	Diw				
10' Jan	10	3.0	10	3.0	9	3.0	9	3.0	9	3.0	8	2.5	8	23	a	2.3	
20' 6m	20	6.0	19	6.0	18	5.5	18	55	17.	5.0	16	5.0	16	5.0	15	43	

Over 100 Ft of Water Depth

Decompression Chamber On-Site

Facilitating a Safer Dive

- □ Provide Keys to All of the Roof Manholes
- □ Keep Water Levels High
- □ Isolate the Tank Early
- □ Let Inspectors Know if the Tank Has an Interior Ladder

Dive Safety Checklist OSHA

- Up-to-Date Company & Diver Dive Logs
- □ CPR/First-Aid & Oxygen Administration Training
- □ 4-Member Dive Team
- □ Comply with OSHA Hazard Communication Requirements
- □ Lockout & Tag All Valves
- Previous Dive Plans
- Commercial Diver Certification
- □ Sufficient Equipment to Suit-Up 3 Divers
- Comply with OSHA Confined Space
- □ Compliance with New OSHA Subpart D Walking Surfaces (effective January 17, 2017)

Additional Recommendations

- Extensive Experience in Water Tank Engineering & Inspection
- ☐ Diver is Employee of Registered Professional Engineer
- Tank Isolated System while Diver in Tank
- Potential for 5-Member Dive Team

Dive Evaluation Sample RFQ Available

Snodgrass@TankIndustry.com www.TankIndustry.com

Questions?

