

The Right Money, On the Right Mains, At the Right Time

Tacoma's Strategic Main Replacement Strategy through Economic Modeling

PNWS-AWWA SECTION CONFERENCE TACOMA, WA APRIL 26, 2018

TACOMA PUBLIC UTILITIES

OUTLINE

1. BACKGROUND

2. PROJECT SELECTION

- Historical Practice
- Current Practice
- Industry Practice

3. PROJECT ECONOMICS

- Economic Model
- Assumptions
- GIS and the Multiple Asset Decision (MAD) Module

4. EXAMPLE PROJECT

ABOUT TACOMA WATER

Customers

Direct Service to approximately: 101,000 connections / 320,000 population Peak Day Demands in excess of 100 MGD

Sources of Supply

Green River:

- Previously Unfiltered
- 150 MGD Filtration
 Facility completed 2015
- 73 MGD capacity prior to 2005 completion of Second Supply Pipeline

20 Major Groundwater Wells:

- Up to 55 MGD capacity
- South Tacoma Wellfield has 13 wells with current approximate capacity of 45 MGD

COMPOSITION OF DISTRIBUTION SYSTEM

COMPOSITION OF DISTRIBUTION SYSTEM

MAIN REPLACEMENT PROGRAM 1995-2018

TACOMA PUBLIC UTILITIES

Project Selection

Historical Practice

- 100-year main replacement cycle
- All asbestos cement and galvanized steel pipe are considered to be at the end of their useful life
- All main breaks are considered to have the same detrimental impact
- Take advantage of project partnering opportunities

Project Selection

Present Philosophy:

• Use of Advanced Asset Management Principles

• Understanding and accounting for risk

- Managing assets to the Lowest Lifecycle Cost
- Condition assessment utilized
- Strong emphasis on project coordination
- Consideration of economic development and timing of main replacement projects
- Asbestos cement mains are considered to have remaining life
 TACOMA IN V

Project Sources

Economic Model Analysis (Condition Assessment)

Β.

C.

Α.

Coordinated, Planned Projects

Projects of Opportunity

Project Selection

INDUSTRY PRACTICE: WRF #4656 (draft)

Participating Utility Risk Assessment Methods				
Utility	Type of Assessment	Description		
Tacoma Water	Monetized Risk Assessment	A detailed pipe-by-pipe economic model, with quantified likelihood and monetized consequence.		
Manitowoc Public Utilities	Categorized Risk Assessment	A categorized risk assessment tool done as part of a previous master plan, with weighting factors and multiple likelihood and consequence factors.		
City of Bozeman	Categorized Risk Assessment	A categorized risk assessment tool, with multiple likelihood and consequence factors.		
Tualatin Valley Water District	CIP Prioritization	A detailed CIP prioritization tool, with a variety of detailed scoring for both likelihood and consequence factors; not system-wide.		
City of Bend	Criticality Assessment only	A system-wide criticality assessment done as an add- on to a previous master plan; focused on hydraulic criticality.		

Table 4.1

Path A: Economic Model Analysis

Economic Model Analysis

Economic Model Analysis

DISTRIBUTION MAINS

SAVE ASSET TO MAD

RELOAD ASSET

DEMOGRAPHICS					
Asset ID	M-0037610				
Pipe diameter	2				
Existing material code	GLV				
Pipe length (ft)	1				
Installation year	1987				
Transmission Main Name	NA				
Project Type	SDO				
Project ID	19151				
Pipe class	UNK				
Approximate Location	BlueWave Link				
Pressure Zone	346				
Calculated Static Pressure	55.09041934				
Jurisdiction	City of Tacoma				
Road type	Collector				
Pavement type	Bituminous Surface Oilmat				
Effective age (yrs)	29				

INTERVENTIONS					
Existing material	GLV				
Replacement type	DI				
Replacement cost, base	\$2,000				
Pavement Restoration	\$560				
Replacement cost, total	\$2,560				

RESULTS				
Age at replacement	29			
Years To replacement	0			
Year of replacement	2016			
Benefit/cost ratio	1.09			
Lifecycle cost of new asset	\$51			
Net benefit of replacement	\$5			
Assumed data?	No			
Lifecycle of new asset	200			

PROBABILITY OF FAILURE				
Breaks by project 1000'	0.27324591			

Economic Model Analysis

How many years to replacement?

- 0 years = budget
- 1-20 years = review for budgeting

How do we prioritize equal years to replacement?

- Consequence cost
- Coordinating projects

How does condition assessment change years to replacement?

- Typically lowers years to replacement
 - Increased failure multiplier added to model
- Of 68,000 which pipes should be assessed first?
 - Critical crossings (highway, railroad, etc.)
 - Pipes for which the failure multiplier reduces years to replacement to 20 years or less
 - Pipes in areas with more breaks
 - Lack of records

CONDITION ASSESSMENT FAILURE MULTIPLIER					
Degradation Pe	Failure Multiplier				
0.0	7.5	1.0			
7.5	15.0	1.1			
15.0	30.0	1.5			
30.0	1000.0	2.0			

Path B: Coordinated, Planned Projects

How do we become aware of these projects?

- City contacts
- Long range planning documents

Do we always participate in projects we become aware of?

No – depends on Business Case Evaluation (BCE)

ASSUMPTIONS

TACOMA PUBLIC UTILITIES

Replacement Size Replacement Type Road Type Multiplier Boring Requirements Pipe Removal Costs Replacement Cost

- Internal Labor
- Open Cut Costs
- Boring Costs

Landscape Restoration

- Endangered Species Act Restoration
- Landscape Restoration

Pavement Restoration

Condition Assessment Failure Multiplier

- Condition Assessment Multiplier
- Corrosive Soils Multiplier
- Failure History Multiplier

Customer Outage Calculations

Minor Scenario Major Scenario Catastrophic Scenario Streams Wetlands Lakes & Ponds Stream Fishery Type Types of Crossings Program Inputs Special Pipe Feature

- Casing
- Polyethylene Wrap
- Cathodic Protection
- Deep Bury
- Wrapped Pipe
- Elevated Pipe
- Elevated Roadway Above

TACOMA PUBLIC UTILITIES 2

Most important/impactful assumptions:

Discount Rate Likelihood of Failure

- Failure Multipliers
- Pipe Failure Rates **Consequence Cost**
- 3 Scenarios
- Pipe Casings
- Critical Areas

Replacement Costs

Risk = likelihood × consequence

Discount Rate

- Set by Rates & Financial Planning
- The annual rate at which future cash flows are "discounted" in order to convert those cash flows into present day dollars. The real discount rate DOES account for inflation in itself, and so is lower than the "nominal" discount rate. (Tacoma Water Glossary definition)

• **1.94%**

Likelihood of Failure

Consequence Cost

Replacement Cost

Discount Rate

Likelihood of Failure

Failure Multipliers

- Condition assessment multiplier
- **Corrosion multiplier** •
- Failure history multiplier •
- Pipe Failure Rates
 - Historical observed rates for each material class
 - Fitted to Weibull curve

Consequence Cost

Replacement Cost

CONDITION ASSESSMENT MULTIPLIER Condition Assessment 1.10 **Corrosive Soils** 1.50 **Failure History** 1.00 CA Multiplier Used 1.65

TACOMA 🔄 WAT TACOMA PUBLIC UTILITIES

Discount Rate

Likelihood of Failure

Consequence Cost

- 3 Scenarios
 - Minor, major, and catastrophic breaks
- Pipe Casings
 - Special pipe features (adjusts risk)
- Critical Areas
 - Crossings (highway, railroad, bridge, stream, wetland)
 - Contaminated soils
 - Corrosive soils
 - Erosion
 - Steep slopes

\$6.518 \$13,603 \$7,070 \$7,070 \$7,070 \$7,070 \$3 Weighted Cost \$3 Weighted Cost

TACOMA PUBLIC UTILITIES

Replacement Cost

Discount Rate

Likelihood of Failure

Consequence Cost

Replacement Costs

- Internal Labor
- Open Cut Costs
- Landscape Restoration
- Endangered Species Restoration
- Pavement Restoration (All Types)
- Pipe Removal Costs
- Moratorium Fees/Duration

Project Economics: BlueWave Selection Tool

Multiple Asset Decision (MAD) Module

Identified projects are selected in BlueWave and imported into the MAD module.

Does the MAD module take into account the economic model?

• Yes – data is used directly.

What does the MAD module output?

- Net present value (NPV) of completing a project
- Project cost and budget request
- Optimal replacement year

Project Economics: Multiple Asset Decision (MAD) Module

MAD MODULE OUTPUT: MadisonMonroeGunnison 2017

												-
SAVINGS DUE	TO RESTORA	ATION OPP	ORTUNITY				PR	OJECT SAV	INGS DUE 1	TO EFFICIEN	ICY	
Year of re	estoration opp	ortunity (#)	2017 Efficiency savings (%)		2017 Efficiency savings (%) 35%		5%					
	Restoration	savings (%)	100	0.0%				Efficiency	savings (\$)	\$672	2,754	
	Restoration	n savings (\$)	\$377	7,207				Project	Not Ronofit			
	Moratori	ium cost (\$)	\$24	,000	\$400	,000 -		Project	Net bellent			
Mora	atorium duratio	on years (#)	2	25		·						
Avoided m	noratorium risk	savings (\$)	\$446	5,222	\$200	,000 -						
	Failur	e Multiplier	4.	00		ćo.						
Duration of	f Risk Savings B	Benefit (Yrs)	1	24		Ş0 - 2016	2017	2018 2019	2020	2021 2022	2023	2024 2025
	F	Risk Savings	\$462	2,558	-\$200	,000 -	, 2017	2010 2013	2020	2021 2022	2023	2024 2025
	PROJECT RE	SULTS			-\$400	,000 -						
	Optimal p	project year	20)17	-\$600	,000 -						
Pi	roject cost in o	ptimal year	\$1,24	19,400								
0	ptimal project	net benefit	\$240	0,963	-\$800	,000 -	_					
	Opportunity p	project year	Same As	5 Optimal	\$1.000	000	_					_
Projec	t cost in oppoi	rtunity year	Same As	Optimal	-\$1,000	,000						
	Opportunity	net benefit	Same As	s Optimal	-\$1,200	,000						
	2016 benefi	it/cost ratio	N	/A								
		-	-	_			_					-
COST-BENEFIT TA	BLE	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
Deviation cost		\$1,690,150	\$1,680,501	\$1,670,773	\$1,660,967	\$1,651,081	\$1,641,118	\$1,631,076	\$1,620,957	\$1,610,760	\$1,600,485	
Efficiency savings		\$672,754	\$659,951	\$647,391	\$635,071	\$622,985	\$611,129	\$599,499	\$588,090	\$576,898	\$565,919	
Restoration saving	s	\$0	\$370,029	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
Moratorium saving	s	\$446,222	\$437,730	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
Risk Savings		\$462,558	\$453,756	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
Net Benefit		-\$108,616	\$240,963	-\$1,023,382	-\$1,025,896	-\$1,028,096	-\$1,029,989	-\$1,031,577	-\$1,032,867	-\$1,033,861	-\$1,034,566	5
				4	ASSET DEM	OGRAPHIC	S					
Material	TOTALS	DI	CI WW2	CI OLD	CI	AC	PLS	GLV	STL	COP	PVC	OTHER
Length	6,976.12	24.93	5,384.54	1,566.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Original Failure Probability	23.64%	0.00%	20.88%	2.76%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Modified Failure Probability	94 56%	0.01%	83 53%	11.02%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Generated 9/22/2016

Multiple Asset Decision (MAD) Module

What are inputs to the MAD module?

- Discount Rate (%)
- Failure Multiplier
- Year of Restoration Opportunity
- Restoration Savings (%)
- Duration of Risk Savings Benefit
- Efficiency Savings (%)
- Minimum Project Cost
- Moratorium Cost (\$)
- Moratorium Duration Years
- Optimal Project Year

SAVINGS DUE TO RESTORATION	N OPPORTUNITY
Year of restoration opportunity (#)	2017
Restoration savings (%)	100.0%
Restoration savings (\$)	\$377,207
Moratorium cost (\$)	\$24,000
Moratorium duration years (#)	25
Avoided moratorium risk savings (\$)	\$446,222
Failure Multiplier	4.00
Duration of Risk Savings Benefit (Yrs)	124
Risk Savings	\$462,558

PROJECT SAVINGS DUE TO EFFICIENCY			
Efficiency savings (%)	35%		
Efficiency savings (\$)	\$672,754		

PROJECT RESULTS

Optimal project year	2017
Project cost in optimal year	\$1,249,400
Optimal project net benefit	\$240,963
Opportunity project year	Same As Optimal
roject cost in opportunity year	Same As Optimal
Opportunity net benefit	Same As Optimal
2016 benefit/cost ratio	N/A

Multiple Asset Decision (MAD) Module

Most important/impactful assumptions:

Failure Multiplier Restoration Savings (%) Efficiency Savings (%) Minimum Project Cost Moratorium Cost Moratorium Duration

SAVINGS DUE TO RESTORATION OPPORTUNITY					
2017					
100.0%					
\$377,207					
\$24,000					
25					
\$446,222					
4.00					
124					
\$462,558					

PROJECT	SAVINGS D	UE TO E	FFICIENCY
---------	-----------	---------	-----------

Efficiency savings (%)	35%
Efficiency savings (\$)	\$672,754

PROJECT RESULTS

Optimal project year	2017
Project cost in optimal year	\$1,249,400
Optimal project net benefit	\$240,963
Opportunity project year	Same As Optima
oject cost in opportunity year	Same As Optima
Opportunity net benefit	Same As Optima
2016 benefit/cost ratio	N/A

Ρ

Failure Multiplier

Increases near term main failure probability

MAD Table 1. Failure Multiplier Criteria Multiple Asset Decision (MAD) Module Assumptions

Updated: 2/12/2016

Criteria	Failure Multiplier	
Subsection of AC Mains Within Project Limits Shows Fair/Poor Pipe Condition	1.50	
AC Mains Near (But Not Within) Project Limits Shows Fair/Poor Pipe Condition	2.00	
Permeable Pavements Installed Above Cast Iron Main	4.00	
Major Utility Replacement Under or Along Length of Main (AC, Cast Iron, Galvanized)	4.00	
Minor Utility Replacement Near Main (AC, Cast Iron, Galvanized)	2.00	
	Criteria Subsection of AC Mains Within Project Limits Shows Fair/Poor Pipe Condition AC Mains Near (But Not Within) Project Limits Shows Fair/Poor Pipe Condition Permeable Pavements Installed Above Cast Iron Main Major Utility Replacement Under or Along Length of Main (AC, Cast Iron, Galvanized) Minor Utility Replacement Near Main (AC, Cast Iron, Galvanized)	CriteriaFailure MultiplierSubsection of AC Mains Within Project Limits Shows Fair/Poor Pipe Condition1.50AC Mains Near (But Not Within) Project Limits Shows Fair/Poor Pipe Condition2.00Permeable Pavements Installed Above Cast Iron Main4.00Major Utility Replacement Under or Along Length of Main (AC, Cast Iron, Galvanized)4.00Minor Utility Replacement Near Main (AC, Cast Iron, Galvanized)2.00

* User to manually input selected values into MAD Module based on project characteristics.

+ See MAD Module Assumptions for clarifications and reasoning.

Restoration Savings (%)

 % restoration costs that Tacoma Water will not have to pay (typically due to project partners)

MAD Table 2. Efficiency Tables

Efficiency Savings (%)

Updated: 2/12/2016

2.A Economy of Scale

% of nonrestoration project costs saved

Efficiency Savings Percent
0%
0%
5%
10%
15%

Multiple Asset Decision (MAD) Module Assumptions

2.B Project Partners

# of Partners (other than Tacoma Water)	Efficiency Savings Percent		
N/A	0%		
0	0%		
1	25%		
2	35%		
3 +	45%		

* Sum applicable economy of scale value and project partners value for total efficiency savings.

+ See MAD Module Assumptions for clarifications, reasoning, and minimum project cost evaluation.

Minimum Project Cost

Assumed minimum \$/LF of project

MAD Table 3. Minimum Project Cost Multiple Asset Decision (MAD) Module Assumptions

Updated: 2/12/2016

			Project Length (LF)			
			0 - 100	100 - 300	300 - 1000	1000 +
lurisdiction	Road Type	Restoration Costs	Minimum Project Cost(\$/LF)			LF)
Federal Way	Highway/Arterial	Full	\$400.00	\$375.00	\$350.00	\$325.00
Federal Way	Highway/Arterial	Minimum	\$375.00	\$350.00	\$325.00	\$300.00
Federal Way	Residential	Full	\$350.00	\$325.00	\$300.00	\$275.00
Federal Way	Residential	Minimum	\$325.00	\$300.00	\$275.00	\$250.00
Tacoma	Highway/Arterial	Full	\$300.00	\$275.00	\$250.00	\$225.00
Tacoma	Highway/Arterial	Minimum	\$250.00	\$225.00	\$200.00	\$175.00
Tacoma	Residential	Full	\$275.00	\$250.00	\$225.00	\$200.00
Tacoma	Residential	Minimum	\$250.00	\$225.00	\$200.00	\$175.00

* MAD Module project costs to reasonably comply with applicable minimum project cost from table.

+ See MADA Module Assumptions for clarifications, reasoning, and minimum project cost evaluation.

Moratorium Cost (\$)

- Additional cost not in economic model
- Includes
 - Mitigation fees for cutting into new pavement,
 - Extended paving requirements for cutting into new pavement, and
 - Added costs for repairing a more expensive road
- Shown as *benefit* of completing project

Moratorium Duration

- Number of years for which a moratorium cost persists (moratorium period)
- Typically 3-7 years

Net Benefit

How is it calculated?

Net Benefit = Benefits – Costs

Do we do projects with negative Net Benefit?

- Benefit Cost Ratio of 0.90
- Use best judgement for 0.80-0.90
- Assumes 90% confidence in economic model
- <u>Triple Bottom Line</u> assessment

What is included in Net Benefit calculation?

- All materials, labor, pavement restoration costs, taxes, A&G
- Not included: contingency

How is Net Benefit shown?

Alternative vs. Status Quo

Future Work

- FINALIZE LONG TERM MAIN REPLACEMENT STRATEGY
 SUMMARY DOCUMENT
- INCORPORATE VALVES, HYDRANTS, AND SERVICES INTO THE MODEL
- COMPLETE MAIN REPLACEMENT UTILITY SURVEY
- OPTIMIZE CONDITION ASSESSMENT SELECTION
- INCORPORATE LEVEL OF SERVICE INTO THE MODEL
 - FIRE FLOW
 - PRESSURE
 - MAIN BREAKS
- INCORPORATE ALTERNATIVE MAIN REPLACEMENT METHODS (LININGS, ETC.)

Thank You

Ryan Flynn Tony Lindgren Tonya Dixon Ali Polda Seth Doull Jonathan Schlaudraff **Andy Simpson Keith Burdette Corey Bedient Michael Washington Danial Broussard Jodi Collins** Jenn Laughlin Lyna Vo **Frank Blaha**

Thank You

American Water Works Association Pacific Northwest Section

2017 PNWS-AWWA EXCELLENCE IN ENGINEERING BEST PLANNING PROJECT

Tacoma's Economic Model Team:

Ryan Flynn Matt Hubbard Seth Doull Michael Creamer Erik Carlson Andy Simpson BIS Consulting, LLC

QUESTIONS?

Matt Hubbard TACOMA WATER System Planning Engineer mjhubbard@cityoftacoma.org (253) 502-8501

Strategic Main Replacement Program:

\$32 million+ 60+ Business Cases One Economic Model "The right money, on the right mains, at the right time."

BACKUP SLIDES

TACOMA PUBLIC UTILITIES

AWARDS:

2017 PNWS-AWWA EXCELLENCE IN ENGINEERING BEST PLANNING PROJECT

2017 TPU TOTAL QUALITY MOST IMPORTANT LEGACY AWARD

TACOMA PUBLIC UTILITIES

HOW LONG DOES DUCTILE IRON PIPE LAST?

Variable by environment and corrosiveness of soils

DIPRA (ductile iron pipe research association)

- In the year 1455 AD cast iron pipe was installed in Siegerland, Germany.
- In 1664 more than 15 miles of cast iron pipe was installed to provide water to Versailles (King Louis XIV), lasted more than 330 years
- Evidence of cast iron lasting at least 100 years
 - 567 North American cities
 - 150+ years in some places (27 North American cities, 2 as installed as early as 1816)
- Design service life is typically at least 105 years

2017-2018 BUSINESS CASE #11

PROJECT OF OPPORTUNITY: MADISON, MONROE, AND GUNNISON - ENV. SERVICES PERMEABLE PAVEMENT AND SANITARY SEWER

100 Year Modeled Annual Replacement Cost

100 Year Modeled Annual Replacement Cost

Project Selection

INDUSTRY PRACTICE:

• 2017 AWWA Benchmarking Utilities

• Renewal and Replacement Percentage (Table 2-9D)

Percentile	Participating Utilities Annual Replacement %
75 th	2.4%
Median	1.2%
25 th	0.6%

(Tacoma ~0.44%)

Project Selection

Water System Data	Tacoma Water		
Distribution System Size (miles)	1,255		
Annual Miles of Distribution Main Replacements (miles)	5.55		
Annual Budget for Distribution Main Replacements	\$7.7 M		
Annual Distribution System Replacement Percentage (calculated)	0.44%		
Annual Distribution System Pace of Replacement (years, calculated)	227		
Method of Main Replacement Project Assessment/Selection	Risk Based Monetized Economic Model for Distribution Mains (Excel/Access)		

INDUSTRY PRACTICE: Future AMWA Survey

Key Principles – Biennial Budget

3 Paths to Project Selection, Same Economics

Economic Model & Condition Assessment

- 0-20 years outlook
- Prioritize by partnering and consequence cost, if needed
- Planned, Coordinated Projects
- Projects of Opportunity

Net Benefit Analysis using MAD Module

- Budget if: Benefits Cost Ratio ≥ 0.90
- Engineering Judgement if: Benefit Cost Ratio = 0.80-0.90

Triple Bottom Line Assessment

Stay apprised of new break/cost data as system ages

Review Economic Model Assumptions Before Each Budget Cycle

Include basic probability assessment of each project likelihood

Key Principles – 10 Year CIP

CIP Development

- New CIP created every 2 years
- Replace a minimum amount of pipe each year
 - Best practice is replace as you go
 - Project selection based on net benefit analysis and opportunities
- Project future spending by assuming 300 year replacement rate
 - Replace minimum of 0.33% of system annually
 - This is conservative (meaning to err on the side of less annual pipe replacements than more)

• Assume:

- System growth of 6.5 miles per year
- Existing distribution system is 1,255 miles in length
- \$1,000,000 per mile of pipe replacements
- Base FRP, WDP, LID/Contract, and Proposition 3/A budgets off of historical values or known projects

Annual Replacement Rate

Distribution System Annual Main Retirements (miles), 1995-2020

Annual Replacement Rate

Distribution System Annual Pace of Replacement (years), 1995-2020

NOTABLE DOLLAR VALUES

\$7,706,430

 Annual budget request for 2019-2020 biennium (\$15,412,486 total)

\$2,450,923,844

Total distribution system replacement Cost (plant value)

0.314%

Annual percent of plant value replaced

318 years

 Spending pace of replacement for complete system renewal

NOTABLE <u>LENGTH</u> VALUES

5.55 miles

 Annual main replacement pipe length for 2019/2020 biennium (11.1 miles total)

1,255 miles

• 2018 Total Distribution system total pipe length

0.44%

Annual percent of total pipe length replaced

227 years

• Pipe length pace of replacement for complete renewal

2017 Model Updates

Improved Economic Model calculations by adding:

- Tax
- A&G
- Pipe Casings

Reviewed Economic Model replacement costs/multipliers:

- Internal design costs
- Open cut pipe costs
- Pavement restoration costs
- Failure multipliers

Added BlueWave features and support:

- Moved Economic Model and MAD Module to production server
- Added pipe casing data
- Improved MAD Module project tracking (draft/published/archived status)
- Added Economic Model project reports creation
- Added Economic Model BlueWave analysis layers

Technology

- Pipe Linings
- Seismic Resilience
- Satellite Leak Detection
- Leak Detection Monitoring
- Advanced Condition Assessment
 - Average vs. localized data

Project Selection

INDUSTRY PRACTICE:

2017 AWWA Benchmarking Utilities

Table 2-9DAggregate data for the system renewal and replacementindicators (%)—water transmission and distribution

	75th percentile	Median	25th percentile	Sample size
Water utilities	2.4%	1.2%	0.6%	28
Combined utilities—water operations	2.8%	1.7%	0.7%	34

Figure 6-14 Water utility—system renewal/replacement: water pipeline

2017 AWWA UTILITY BENCHMARKING

Figure 6-36 Water utility—water distribution system integrity (leaks and breaks/100 miles of pipe)

Big Picture Thinking

Work with our customers' best interests in mind

- Is there less maintenance required with more replacements?
- Do we have fewer main breaks with more replacements?
- Do rates change significantly if the replacement rate changes?
- Do we need to replace mains? If so, how many?
- Does water quality change with more replacements?