# **Kennedy/Jenks Consultants**

Two Utilities Take Different Approaches in Dealing with PCE Contamination of their Wells

Randy Black, General Manager, Lakewood Water District Milt Larsen, PE, Kennedy/Jenks Consultants

# Tetrachloroethylene (PCE)

- Manufactured chemical used for dry cleaning and metal degreasing
- 1970s Peak use as a dry cleaning solvent
- 1980s Probable carcinogen, toxic pollutant,
- Drinking water maximum contaminant level (MCL) = 5 μg/L
- In groundwater environment dense non-aqueous phase liquid (DNAPL)

Kennedv/Jenks

- Sinks Heavier than water
- Can be removed by treatment for drinking water use.



# Lakewood Water District

WATER DISTRICT

- Formed in 1943
- Serves
  - Over 60,000 retail customers
  - 55,000 wholesale customers (Town of Steilacoom, Summit Water & Supply Co., Spanaway Water Co., Rainier View Water Co.)
- Groundwater supply
- 30 active wells



Kennedy/Jenks

# Lakewood Water District Ponders Wells

- Ponders Wells
  - H-1 1,200 gpm
  - H-2 800 gpm
  - Water rights 2,800 gpm
  - Annual production 250 MG
- 1980-81 DOH VOC investigation of Chambers Creek-Clover Creek Basin
  - PCE 18 μg/L
  - TCE < 10 μg/L
  - 1,2 (trans) dichloroethylene
    61 μg/L
- 1983 10-day pump test
  - PCE 320 to 185 μg/L
  - TCE later measured at 28  $\mu g/L$
- Predates the VOC MCL





#### Lakewood Water District's Ponders Wells





5 S.

#### Ponders

- Wells shutdown for 3 years
  - Limited pressure
  - Inadequate fire flow protection
- Declared a Superfund Site
- EPA had air stripping towers designed & installed
- 1984 Record of Decision
  - Interim facility: 3-year life
- 1985 Record of Decision
  - Need for 10 to 12 years
- 2012 5<sup>th</sup> 5-year review by US Army Corps of Engineers for EPA
  - Need to operate for over 100
    years due to PCE leaching from
    Vashon Till



#### Geological Cross Section of Site

**dd** 





# Aging Facilities

- FRP towers delaminating
- Packing depth > recommended by mfr.
- Packing crushed & replaced in 2000
- Tower seismic design
- Well pumps sized to pump to distribution system rather than to the towers
- Electrical/control equipment replacement parts availability
- Clearwell accessibility and sanitary protection



Kennedy/Jenks



#### H-1 & H-2 PCE Concentration



Kennedy/Jenks

14. S

## **District Goals & PCE Alternatives**

- District Goals
  - Deliver water with nondetect PCE
  - Develop full water right
    Wholesale pipeline near Ponders
- Alternatives
  - Drill new wells elsewhere
  - Drill deeper wells into Aquifer C
    - » Fe & Mn likely issues with Aquifer C
  - PCE treatment



# **Treatment Alternatives**

- Air Stripping
  - Packed Tower Aeration
  - Low Profile
    - » Multi-Stage Bubble Aeration
    - » Sieve-Tray (ShallowTray)
    - » Spray Aeration
- Granular Activated Carbon
- Membrane Cell Degassing
- Advanced Oxidation
  - UV-H<sub>2</sub>O<sub>2</sub>
  - Ozone-H<sub>2</sub>O<sub>2</sub>





Kennedy/Jenks

| Site                     | Alternative                | Life Cycle Cost \$/1,000 gal | Location     | Impact Abitibi Water Rights |
|--------------------------|----------------------------|------------------------------|--------------|-----------------------------|
| PCE treatment at Ponders | РТА                        | \$0.88                       | Good         | No                          |
|                          | Sieve Tray Aeration        | \$1.05                       | Good         | No                          |
|                          | Multistage Bubble Aeration | \$1.15                       | Good         | No                          |
|                          | GAC                        | \$1.31                       | Good         | No                          |
|                          | UV/Peroxide                | \$1.57                       | Good         | No                          |
| Deep wells at Ponders    | H3 & H4 in Aquifer E       | \$1.71                       | Good         | No                          |
| New Well Site            | Well R1 Site               | \$0.91                       | Poor         | Yes                         |
|                          | 120 <sup>th</sup> St SW    | \$1.94                       | Good         | No                          |
|                          | Scotts Wellfield           | \$1.72                       | Fair to Good | Yes                         |
| Hybrid                   | PTA at Ponder & Well W1    | \$1.83                       | Good         | No                          |



## **Treatment Process & Funding**

- Selected process
  - Packed tower aeration (stainless steel)
- Funding
  - EPA considers replacement facility as maintenance & declined to fund
  - Alternatives Evaluation-WA DOH & Ecology & District
  - WA \$1.5 million grant design, equipment prepurchase
  - WA \$1.8 million supplemental grant – construction



Kennedy/Jenks



# Ponders Wellfield - Proposed Layout of Well H-3







Kennedy/Jenks

# Tahoe Key Property Owners Association







### **Groundwater BASIN**

- Tahoe valley south basin
- Sedimentary Geologic Basin
- Highly productive for groundwater
- Recharged from surrounding watersheds
- Excellent water quality
- High reliance on WELLS
- Susceptible to contamination



# South Y Contaminant Plume

- South Y PCE dates to 1972 activities.
- Initial Investigation required by Lahontan in 2003-2008
- Interim soil remediation activities started in 2010
- Cleanup- and Abatement Order issued 2017 by Lahontan



# Tahoe Keys & South Y PCE

- Well 2 2,150 gpm
  - 1989: PCE detection
  - 2009 well shutdown
  - 2012: GAC treatment installed
  - 2017: PCE  $\approx$  20 µg/L (4x MCL)
- Well 1 1,000 gpm
  - 1989: no detections
  - 1996-2014 9 samples, 2 at 0.6 μg/L
  - 2016-2017 15 samples 1.6 to 4 μg/L
- Well 3 2,000 gpm
  - 1989-2016 12 samples no
    detections



### Well 2 GAC Treatment Facility

- Derated well from 2,250 gpm to 550 gpm
- 2 20,000 GAC contactors in leadlag configuration
- Shoehorned onto site
- Second hand contactors





# Scope of Phase 1 Study: Facilities Plan Overview

- Address the question what does TKPOA need to do if they lose well(s)?
- Investigated:
  - How much water does TKPOA need to meet Title 22 regulatory requirements?
  - How much supply does TKPOA have?
  - Where is TPKOA you now?
  - What happens if TPKOA loses Well 1
  - What happens if TPKOA loses Well 3
- Developed alternatives to restore/maintain supply reliability



Kennedy/Jenks



# Existing Facilities: Supply Availability to meet Title 22 Demand

- Test 1 Must meet Maximum Day Demand with largest well off line.
  - TKPOA Supply alone fails to meet minimum criteria
  - Resolution TKPOA has a Mutual Aid Agreement with STPUD and the manual intertie can provide the make up supply.
- Test 2 Must meet Peak Hour Demand for 4 hours duration (all wells running)
  - Supply meets minimum criteria
- Test 3 Fire Flow Conditions (Max Day Demand plus 2,500 gpm fire flow)
  - TKPOA Supply alone fails to meet criteria
  - Resolution TKPOA has a Mutual Aid Agreement with STPUD and the manual intertie that can provide the fire flow supply.





# **Conceptual Alternatives Identification**

- TKPOA Only
  - 1. \*New Well to replace Well 1
  - 2. \*Storage tank and booster pump station
  - 3. \*Groundwater Treatment at Well 1 site or Lagoon WTP
  - 4. \*Expand Well 2 treatment at Lagoon WTP
  - 5. \*Replacement Well 1 and Treatment
  - 6. \*Expand Well 2 Treatment at Well 2
  - 7. Centralized Treatment at Lagoon WTP

- TKPOA With Partners
  - 8. Regional Surface Water Treatment Plant and well water blend
  - 9. New STPUD well Outside Plume to import to TKPOA
  - **10.** Water System Consolidation
  - 11. Develop Surface Water Source (eg Upper Truckee River)
  - 12. Centralized Treatment at Lagoon WTP

Kennedv/Jenks



## **Treatment Screening**

- PCE concentration
  - Well 2 max 22 μg/L
  - Upgradient 50 to >280 μg/L
  - Use 50 to 100 μg/L
- Life Cycle cost
- Footprint
  - Limit land availability
  - Height limitations
- O&M complexity
- Flexibility for expansion
- Permitting
- Neighborhood impacts
  - Traffic, visible plume



Kennedy/Jenks

# Tahoe Keys Treatment Alternatives Evaluation

| Treatment<br>Alternative<br>Description | Treatment<br>Footprint Size | Relative Life<br>Cycle Cost of<br>Treatment | Maintenance<br>and Operation<br>Complexity | Flexibility for<br>Expansion | Permitting in<br>Lake Tahoe | DDW<br>Permitting<br>Effort | Neighborhood<br>Impacts<br>(Aesthetics/<br>Noise) | Timeline for<br>Implementation |
|-----------------------------------------|-----------------------------|---------------------------------------------|--------------------------------------------|------------------------------|-----------------------------|-----------------------------|---------------------------------------------------|--------------------------------|
| 1 - GAC                                 | Low                         | Medium                                      | Low to Medium                              | High                         | Low to Medium               | Low                         | Low to Medium                                     | Short                          |
| 2 - Packed<br>Tower Aeration            | High                        | Low                                         | Low to Medium                              | Medium to High               | High                        | Low                         | High                                              | Long                           |
| 3 - Multi-Stage<br>Bubble Aeration      | High                        | Low to Medium                               | Low to Medium                              | Medium                       | Low to Medium               | High                        | Low to Medium                                     | Short                          |
| 4 -<br>ShallowTray™<br>Aeration         | Medium                      | Low to Medium                               | Low to Medium                              | Medium to High               | Low to Medium               | Very High                   | Low to Medium                                     | Short                          |
| 5 - Membrane<br>Cell Degassing          | Medium                      | Medium to High                              | Low to Medium                              | Medium                       | Low                         | Very High                   | Medium                                            | Short                          |
| 6 - Spray<br>Aeration                   | High                        | High                                        | Low to <mark>Medium</mark>                 | Low                          | Medium                      | Very High                   | Medium                                            | Medium                         |
| 7 - Surface<br>Aeration                 | High                        | High                                        | Low to Medium                              | Low                          | Medium                      | Very High                   | Medium                                            | Medium                         |
| 8 - UV-<br>Hydrogen<br>Peroxide         | Medium                      | High                                        | High                                       | Medium to High               | High                        | High                        | Medium                                            | Long                           |
| 9 - Ozone-<br>Hydrogen<br>Peroxide      | High                        | High                                        | High                                       | Medium to High               | High                        | Very High                   | Medium                                            | Long                           |
| ter                                     |                             |                                             |                                            |                              |                             | A CONTRACTOR                |                                                   |                                |

Kennedy Jenks Consultants

# Tahoe Key Alternative Evaluation

| Alternative                                      |                      | Reliable Water<br>Supply | Implementation<br>Cost | Relative O&M<br>Cost        | Regional Clean-<br>Up Benefit | Timeline for<br>Implementation | Permitting Ease<br>in Lake Tahoe | Neighborhood<br>Impacts     | Land Purchase<br>Needed |
|--------------------------------------------------|----------------------|--------------------------|------------------------|-----------------------------|-------------------------------|--------------------------------|----------------------------------|-----------------------------|-------------------------|
| 1. Construct Replacemer                          | it Well 1R           | High                     | Low                    | Low                         | Low                           | Short                          | High                             | Low                         | No                      |
| 2. Tank and Booster Pun                          | p Station            | Medium                   | High                   | Medium                      | Low                           | Short-<br><mark>Medium</mark>  | High                             | Medium                      | No                      |
| 3a. Add 1,000 gpm Treatm<br>Well 1 at Well 1     | ent to               | Medium                   | Medium                 | Medium                      | <mark>Medium</mark> -<br>High | Medium                         | Medium                           | Medium                      | No                      |
| 3b. Add 1,000 gpm Treatm<br>Well 1 at Lagoon WTP | ent to               | Medium                   | Medium                 | Medium                      | <mark>Medium</mark> -<br>High | Medium                         | Medium                           | Low<br><mark>Medium</mark>  | No                      |
| 4. Expand Well 2 Treatm<br>Lagoon WTP            | ent at               | High                     | Medium                 | Low-<br><mark>Medium</mark> | High                          | Medium                         | Medium                           | Low-<br><mark>Medium</mark> | No                      |
| 5. Construct Replacement<br>and Add Treatment at | it Well 1R<br>Well 1 | High                     | High                   | Medium                      | High                          | Medium                         | <mark>Medium</mark> -<br>High    | High                        | No                      |
| 6. Expand Well 2 Treatm<br>Well 2                | ent at               | Medium                   | Medium                 | Low                         | High                          | Medium                         | Medium                           | High                        | No                      |

Kennedy/Jenks



#### Tahoe Keys Next Steps

- Profile Well 2 water quality by depth and evaluate if they can seal off the well from the contaminated aquifer(s)
- Participating in the South Tahoe PUD South Y
  - Currently drilling test well to evaluate pump and treat



