

Utility Pipeline Risk Management

Presented by: Mark Semrau, PE, PMP April 27, 2017

Corrosion

Murphy's First Corollary

Left to themselves, things tend to go from bad to worse

Devastating Potential

Pipeline Characteristics

- 1. Horizontal and Linear
- 2. Product under Pressure
- 3. Minimal Installed Equipment
- 4. Extensive Environmental Impacts
- 5. Multiple Jurisdictional Interface
- 6. Extensive Public Interface

Several Technical Issues

- Metallurgy
- Fracture Mechanics
- Stress-Strain Reactions
- Coatings
- Soil Chemistry
- Hydrology Influences
- Geotechnical Events
- Electro-Chemical Reactions

Over-Arching Goal

Make Pipelines Safer

Through:

- Understanding Issues
- Measurement and Tracking
- Continuous Improvement

Risk Terminology

Hazard – a characteristic or group of characteristics that provides the potential for a loss.

Hazard ≠ Risk

Risk Terminology

Risk – the probability of an event that causes a loss and the potential magnitude of that loss.

Risk = Likelihood × Consequences

Three Questions:

- 1. What can go wrong?
- 2. How likely is it?
- 3. What are the consequences?

Failure - What can go wrong?

- 1. Not able to perform its intended function.
- 2. Loss of integrity.
- 3. Unintentional release of pipeline contents.

Probability – How likely is it?

- 1. Likelihood
- 2. Degree of belief

Related Terms:

<u>Frequency</u> – Past observation counts

Statistics – Past observation analysis

Failure Rate – Counts over time

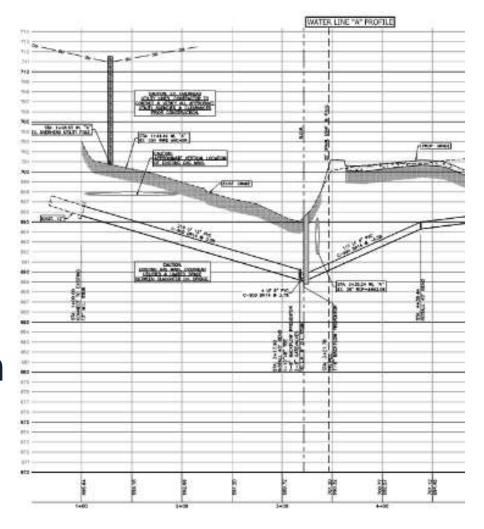
Consequences – What are they?

- Property damage
- Human health impacts
- Environmental damage
- Loss of product
- Repair costs
- Cleanup and remediation costs

Consequences – Indirect costs

- Litigation
- Customer dissatisfaction
- Political reaction
- Regulatory agency fines and penalties
- Contract violations
- Loss of public trust

Risk Assessment – A measuring process


Application of risk modeling tools

Risk Management – A reaction to perceived risk

Design

- Material Selection
- Safety Factor
- Fatigue
- Surge Potential
- Integrity Verification
- Land Movement

Construction


- Inspection
- Materials Handling
- Backfill
- Survey / Maps / Records

Corrosion

- Atmospheric
- Internal
- Subsurface Environment
- Cathodic Protection
- Coatings

Operation

- Training
- Procedures
- SCADA
- Documentation

Third-Party Impacts

Murphy's Second Corollary

It is impossible to make anything foolproof because fools are so ingenious

Third-Party Impacts

- Depth of Cover
- Activity Level
- Above Ground Facilities
- Line Locating
- Right-of-way Conditions
- Patrolling

Risk Score Tabulation

Project: JR-MV Transmission Line - Phase 2

Pipe Section

Station 0+00 to 8+00

Date: February 28, 2018

I. DESIGN INDEX							
Section	Index Description	Range	Score	Comments			
A.	Material Selection	0-20 pts	18	Wrapped Welded Steel Pipe			
B.	Safety Factor	0-25 pts	10	MOP= 180 psi			
C.	Fatigue	0-15 pts	10	Normal fluctuations of 10%			
D.	Surge Potential	0-10 pts	5	Downstream valves nearby			
E.	Integrity Verification	0-15 pts	12	Ability for routine pressure testing.			
F.	Land Movement	0-15 pts	12	Flat ground, but recorded earthquack in vicinity.			
Total Score		0-100 pts	67				

Equations

Safety Factor

Ratio = <u>Design Pressure</u> MOP

Risk Score = $25 \times Ratio - 25$

(Maximum of 25 points)

Data Tables

Table I-C: Fatigue Risk Score							
Percent Above	Lifetime Cycles						
MOP	<10 ³	10³-10⁴	10 ⁴ -10 ⁵	10 ⁵ -10 ⁶	>106		
100	7	5	3	1	0		
90	9	6	4	2	1		
75	10	7	5	3	2		
50	11	8	6	4	3		
25	12	9	7	5	4		
10	13	10	8	6	5		
5	14	11	9	7	6		

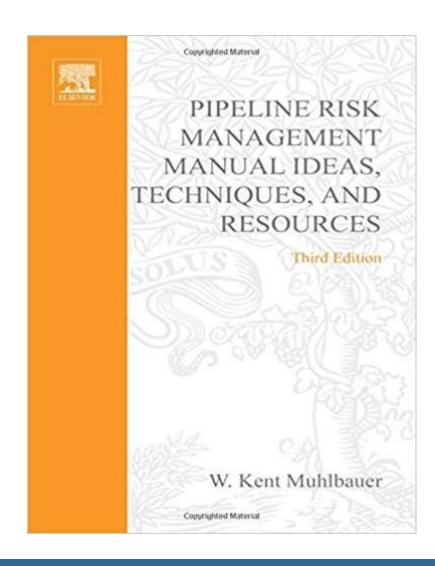

Data Criterion Categories

Table V-B: Activity Level Risk Score				
Score	Characteristics			
0 - 7	 Urban poputation densities (Class 3¹) Frequest construction activity Many buried utilities nearby Dredging or ditch cleaning 			
8 - 14	 Suburban poputation densities (Class 2¹) Moderate construction activity Few buried utilities nearby No dredging 			
15 - 20	 Rural poputation densities (Class 1¹) Low or no construction activity No buried utilities nearby No agricutural activities 			

Sources

- 1. "Pipeline Risk Management Manual Ideas, Techniques, and Resources", Third Edition, W. Kurt Muhlbauer (2004)
- 2. "Identifying and Managing Project Risk", Tom Kendrick, 2003

