Math for Operators

If you can't do the numbers, you can't make the water (or clean the wastewater!)

Version 1.0 & May 2019

Prepared by the Training Coordination Committee, PNWS-AWWA

Acknowledgements: Author Doug Berschauer | Parametrix

Editor Jeff Lundt| KCWTD

Content & Goals: •To enhance and reinforce the math skills for operators

Outline: Workshop topics Math Basics **Aids to Navigation** Units of Measure Algebra Trigonometry **Conversion Factors Practical Applications** Examples – 2nd hour Problem Solving Practice – 3rd hour

Math Basics

You can't run the place without it!

Math Basics - <u>Real</u> Basics

1 + 1 = 2

2 * 2 = 4

The numbers by themselves are generally not useful until we attach units to them so we know what we are measuring

We will assume you have basic math (arithmetic) skills; + - x & /

Math Basics – Adding Units of Measure

1 foot + 1 inch \neq 2

Optional text here

Math Basics – When adding and subtracting must be the <u>SAME</u> units

1 foot + 1 inch ≠ 2 1 foot + (1 inch * (12 inches/foot))= 1 foot + (1 inch * (1 foot/12 inches))=

Convert to a common unit of measure, in this case feet

Closer Look – Keeping track of UNITS

Unit Basics – It makes a difference what you want to do

1 foot + 1 inch \neq 2

- 1 foot + 1 inch * (1 foot/12 inches)=
- 1 foot + 1/12 foot = 1 1/12 feet
- 1 foot + .083 foot = 1.083 feet

Useful for a surveyor or bulldozer operator, or for measuring liquid depth

Unit Basics 2

1 foot + 1 inch \neq 2 1 foot * (12 inches/foot) + 1 inch = 12 inches + 1 inch = 13 inches

Useful for a plumber or carpenter

Our choice of units has a lot to do with who we are and what we need to do with the "answer"

Math Basics – Short Cuts

FOUR-PLACE COMMON LOGARITHMS 6

7 8

N

0 1 2 3

Proportional Parts

2 3 4 5 6 7

	Exponents			Image Out Out <thout< th=""> <thout< th="" th<=""><th>067 063 068 073 073 0960 1064 1083 1072 106 1301 1353 1367 1199 140 1614 1644 1577 1703 172 1275 2010 272 253 272 253 274 1275 2010 272 252 272 252 274 272 255 280 274 272 255 280 274 272 281 274 276 280 234 235 246 245 246 244 259 246 245 246 245 246 245 246 245 246 245 246 245 246 245 246 246 246 248 235 245 246 246 248 235 245 246 246 248 235 245 246 246 248 235 248 235 246 2</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th></thout<></thout<>	067 063 068 073 073 0960 1064 1083 1072 106 1301 1353 1367 1199 140 1614 1644 1577 1703 172 1275 2010 272 253 272 253 274 1275 2010 272 252 272 252 274 272 255 280 274 272 255 280 274 272 281 274 276 280 234 235 246 245 246 244 259 246 245 246 245 246 245 246 245 246 245 246 245 246 245 246 246 246 248 235 245 246 246 248 235 245 246 246 248 235 245 246 246 248 235 248 235 246 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Whole number exponents used area and volume formulas	2 * 2 = 4 $2^2 = 4$	You can ofte these by ha your head.	en do nd or in	15 3797 3977 4974 4011 4011 4011 26 4150 4164 418 400 426 27 4134 430 4364 432 4318 433 4424 4437 4523 4544 4439 4544 4439 20 4472 4474 420 418 4323 4451 21 941 4628 442 4954 4639 454 21 951 966 5079 902 515 33 356 32 951 950 511 524 521 533 356 53 548 535 548 537 549 590 511 34 543 445 535 546 547 549 549 351 543 543 543 543 543 544 544 544 544 544 544 544 544	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Fractional exponents used in friction formulas and other equations	$3^2 = 3 * 3 =$ $30^{1.85} = 540$	9	For this one your calcula computer, a log tables.	e you nee ator, a slide ru	ed le, or	1 2 2 3 4 5 6 6 7 1 2 3 4 5 6 7 8 9
Images from International Slide Rule Museum, coolstuff4891.blogspot.com+, & Abelard.com						

Version 1.0 & May 2019

Math Basics

Math Basics – Short Cuts

Then how do the units follow?

 $2 * 2 = 2^2 = 4$ ft * ft = ft²

 $3^3 = 3 * 3 * 3 = 27$ ft * ft * ft = ft³

Math Basics – 2 & 3 dimensions

2 ft * 2 ft = 4 Square Feet (ft²) ft² = sq ft = sf All abbreviations are used

2 ft * 2 inches = 4 foot-inch

Correct But not a useable term

2 acre * 2 feet = 4 acre-feet

Very correct! Is a common term for lake volume

Not all mixed units are wrong

(So how big is an acre you ask? 43,560 sf or a square 208.71 feet on a side)

Calculating areas

=2 ft * 2 inches =2 ft * 2 inches * (1 foot/12 inches) = 2 ft * 2/12 ft = 4/12 ft² = 0.33 ft² (or 1/3 ft²)

- But what if we want sq. in. instead of sq. ft.?
- =2 ft * 2 inches
- =(2 ft * (12 inches/1 foot)) * 2 inches
- = 24 inches * 2 inches
- $= 48 \text{ inches}^2$

Calculating flow rates

200 gallons 20 minutes

= 10 gallons per minute (gpm)

gpm is one of many terms of flow measurement

Aids to Navigation

Resources that will come in handy

Aids to Navigation - Handout

Formula/Conversion Table

ABC PO

Water Treatment, Distribution, & Water Laboratory Exams

Formula/Conversion Table Wastewater Treatment, Collection, Industrial Waste, Alkalinity, mg/L as CaCO3 = (Titrant Volume, mL)(Acid Normali & Wastewater Laboratory Exams Sample Volume, mL Alkalinity, mg/L as CaCO₃ = (Titrant Volume, mL)(Acid Normality)(50,000) V olts Sample Volume, mL Amps = - $Amps = \frac{Volts}{Ohms}$ Area of Circle* = (0.785)(Diameter²) Area of Circle = $(3.14)(\text{Radius}^2)$ Area of Circle * = (0.785)(Diameter²) Area of Cone (lateral area) = (3.14)(Radius) (Radius ² + Height ²) Area of Circle = (3.14)(Radius²) Area of Cone (lateral area) = $(3.14)(\text{Radius})\sqrt{\text{Radius}^2 + \text{Height}^2}$ Area of Cone (total surface area) = (3.14)(Radius)(Radius + _v/Radiu Area of Cone (total surface area) = $(3.14)(\text{Radius})(\text{Radius} + \sqrt{\text{Radius}^2 + \text{Height}^2})$ Area of Cylinder (total exterior surface area) = [End #1 SA] + [Er Where SA = surfaceArea of Cylinder (total exterior surface area) = [End #1 SA] + [End #2 SA] + [(3.14)(Diameter)(Height or Depth)] Where SA = surface area Area of Rectangle * = (Length)(Width) Area of Rectangle * = (Length)(Width) Area of Right Triangle* = $\frac{(Base)(Height)}{2}$ Area of Right Triangle* = $\frac{(Base)(Height)}{2}$ Average (arithmetic mean) = $\frac{\text{Sum of All Terms}}{\text{Number of Terms}}$ Average (arithmetic mean) = $\frac{\text{Sum of All Terms}}{\text{Number of Terms}}$ Average (geometric mean) = $[(X_1)(X_2)(X_3)(X_4)(X_n)]^{1/n}$ Then Average (geometric mean) = $[(X_1)(X_2)(X_3)(X_4)(X_n)]^{1/n}$ The **n**th root of the product of **n** numbers **Blending** = $(V_1)(C_1) + (V_2)(C_2) = (V_3)(C_3)$ Where V=volume or Biochemical Oxygen Demand (seeded), mg/L = [(Initial DO, mg/L)-(Final DO, mg/L)-Seed Correction Factor, mg/L)][300 mL] mL of Sample Graphics from ABC Professional Operators [(Initial DO, mg/L) - (Final DO, mg/L)] [300 mL] Biochemical Oxygen Demand (unseeded), mg/L = mL of Sample

Version 1.0 & May 2019

Math Basics

Units of Measure

Tracking what we count

A 20 foot diameter tank, with 10,000 gallons of water (4.25 feet water depth) is drained in 2 hours using a pump. What is average flow rate in gpm?

A 20 foot diameter tank, with 10,000 gallons of water (4.25 feet water depth) is drained in 2 hours using a pump. What is average flow rate in gpm?

10,000 gallons * 1 hour 2 hours * 60 minutes Change units from what you are given to what you need

A 20 foot diameter tank, with 10,000 gallons of water (4.25 feet water depth) is drained in 2 hours using a pump. What is average flow rate in gpm?

Same flow, different units

10,000 gallons / 7.48 gallons / cu ft

= 1,336.89 cu ft

 $= \frac{1,336.89 \text{ ft}^3}{2 \text{ hrs x 60 min}/\text{ hr x 60 sec}/\text{ min}}$

= 0.186 cubic feet per second (cfs) *Volume per unit of time*

Could we go from gpm to cfs another way?

10,000 gallons / 120 minutes = 83.3 gpm

From the info we have this is the quickest way to get volume / unit time

83.3 gpm x conversion factor >?cfs

Look in our aids and tables to find a conversion factor that fits

= 0.186 cubic feet per second (cfs)

Time for Another Example

Different starting information

 $= \frac{200 \text{ cu ft}}{20 \text{ seconds}}$

= 10 cubic feet per second (cfs) Volume per unit of time

Percentage, Fraction & Decimal

If the Mariners went 1 for 4 on recent road trip ... demonstrate winning

As a fraction

As a decimal

As a percentage

Percentage, Fraction & Decimal

If the Mariners went 1 for 4 on recent road trip ... demonstrate winning

0.25 Decimal

25% Percentage

Just who is "X" and what do they want?

First We Need to Understand Math Order of Operations

- The order in which operations should be done is abbreviated as PEMDAS
 - Parentheses ()
 - Exponents ^
 - Multiplication & Division (from left to right) * /
 - Addition & Subtraction (from left to right) + -

- "Please Excuse My Dear Aunt Sally"

Algebra – Solving for X (and sometimes half of the rest of the alphabet)

Addition

X + 3 = 12 X + 3 - **3** = 12 - **3** Looking to isolate X on one side of the equation

X = 9

Subtract 3 from each side of the equal sign

Algebra – Solving for X

Subtraction	X - 3 = 12	Again we are looking to isolate X on one side of		
Х	- 3 + 3 = 12 + 3	the equation		
	X = 15			

Add 3 from each side of the equal sign

Multiply each side by X to bring X to the numerator and divide each side by 12 to isolate X on one side of the equation

Trigonometry

It's all about relationships!

Trigonometry

- From Greek trigonon "triangle" + metron "measure"
- New terms
 - Angle (theta, θ)
 - Sine
 - Cosine
 - Tangent

How are They Defined?

Conversion Factors

It's all about tracking units!

Conversion Factors are Your Friend!

Most all of water and wastewater math is about converting from one set of units to another.

Conversion Factors are Your Friend!

- 1 foot of water = 0.433 psi 1 cubic foot = 7.48 gallons
- 1 gallon water = 8.34 pounds

Memorize these (and other) conversion factors!

Determine how many seconds are in a day.

Start with 1 day and head towards seconds, one unit of measure at a time.

One Step at a Time Days to Hours

1d 24 hr d

24 hour per day

Days cancel out

One Step at a Time – Hours to Minutes

60 minutes per hour

One Step at a Time – Hours to Minutes

Hours cancel

One Step at a Time – Minutes to Seconds

60 Seconds per minute

Math_Basics

Minutes cancel

Now do the Math

Multiply 24 x 60 x 60 = 86,400 seconds in 1 day

1 foot of water = 0.433 psi

1 foot of water = 0.433 psi

3 feet of water * 0.433 psi 1 foot of water

1 foot of water = 0.433 psi

3 feet of water * 0.433 psi 1 fogt-of water

= 1.3 psi

1 foot of water = 0.433 psi

1 foot of water = 0.433 psi

= 6.9 feet of water

1 cubic foot = 7.48 gallons

How many cubic feet in 100 gallons?

1 cubic foot = 7.48 gallons

100 gallons * <u>1 cubic foot</u> 7.48 gallons

1 cubic foot = 7.48 gallons

100 gallens *1 cubic foot7.48 gallens

= 13.4 cubic feet (ft^3)

Math_Basics

1 cubic foot = 7.48 gallons

1 cubic foot = 7.48 gallons

100 cubic feet * 7.48 gallons 1 cubic foot

1 cubic foot = 7.48 gallons

100 cubic feet * 7.48 gallons 1 cubic foot

=748 gallons

1 gallon water = 8.34 pounds

How many gallons in 100 pounds of water?

1 gallon water = 8.34 pounds

100 pounds * 1 gallon water 8.34 pounds

1 gallon water = 8.34 pounds

100 pounds * 1 gallon water 8.34 pounds

= 12 gallons

1 gallon water = 8.34 pounds

How many pounds in 100 gallons of water?

1 gallon water = 8.34 pounds

100 gallons * 8.34 pounds 1 gallon water

1 gallon water = 8.34 pounds

100 gallons * 8.34 pounds 1 gallon water

= 834 pounds

Let's try out the process

How many gallons in a ton of water?

Problem – Changing Units

How many gallons in a ton of water?

1 gallon water = 8.34 pounds 1 ton = 2000 pounds

How many gallons in a ton of water?

1 ton * 2000 pounds 1 ton * 1 gallon water 8.34 pounds

How many gallons in a ton of water?

1 ton * 2000 pounds * 1 gallon water 1 ton 8.34 pounds

How many gallons in a ton of water?

= 239.8 gallons

How many cubic feet in a ton of water?

How many cubic feet in a ton of water?

How many cubic feet in a ton of water?

= 32.1 cubic feet

Problem – Short cut if you know the conversion factor

How many cubic feet in a ton of water?

= 32.1 cubic feet

Significant Figures & Rounding

Significant figures – How many # after the decimal point? Usually one significant figure after the decimal point is sufficient or 3 numbers

So instead of 11.99034325234 It would be 12.0

11.09 would be 11.1 11.04 would be 11.0

Practical Applications

How do we use this ability?

Distance, Area and Volumes

Distance is one dimension (i.e. ft, meters) Areas are two dimensions (i.e. ft², SY, acres) Volumes are three dimensions (i.e. ft³, CM) Other Volumes: Gallons, Liters, acre-ft

Area = length * width Area = dimension¹ * dimension¹

Note 1 – Dimensions need to be the same units of measure

Area = length * width Area = dimension * dimension

Area = length * width
Area = 2 feet *
$$6 \text{ inches } * 1 \text{ foot}$$

Area = 2 feet * 12 inches
Area = 1 sq ft

Practical Application

You are going to cover your sand filters and the sales rep wants to know the area so he can get you a price. There are 8 trains, each 24 feet wide. The trains are 30 feet long.

Practical Application - Area

You are going to cover your sand filters and the sales rep wants to know the area so he can get you a price. There are <u>eight</u> trains, each <u>24 feet</u> wide. The trains are <u>30 feet</u> long.

Area = 8 basins * 24 ft * 30 ft Area = 5,760 sq ft

Area - Triangles

You are covering a truss with a banner for City Celebration. They want to cover the truss. How big?

You are covering a truss with a banner for City Celebration. They want to cover the truss. How big will the banner be?

Area = 3 triangles = $3 * \frac{1}{2} * 10$ ft * 10 ft = 150 sq ft

Opps! Change of plan, the City Manager now wants a rectangular banner – how big will it be?

The City Manager wants rectangular banner – how big?

Area = 20 ft * 10 ft = 200 sq ft

The Magical World of Pi

Pi is a name given to the ratio of the <u>circumference</u> of a circle to the <u>diameter</u>.

The Magical World of Pi

Practical Use of Pi (π)

The diameter of the circular clarifier is 100 feet. What is the weir length (the circumference)?

Practical Use of Pi (π)

The diameter of the circular clarifier is 100 feet. What is the weir length?

Circumference = $2 \pi r$ Diameter (d) = 2 rCircumference = πd

> 100 feet * $\pi =$ = 314 feet

Practical Use of Pi (π) – Back to Area

The diameter of the circular clarifier is 100 feet. What is the surface area?

Practical Use of Pi (π)

The diameter of the circular clarifier is 100 feet. What is the surface area?

What is the volume of water in a the basin with following characteristics? Answer in **gallons**.

- Length 200 <u>feet</u>
- Width 50 <u>feet</u>
- Total Depth 20 feet
- Freeboard is 3 feet

Desired answer needs to be gallons (volume). Basin dimensions are in feet (length)

Depth of water = 20 feet – 3 feet

Volume = length * width * depth Volume = 200 ft * 50 ft * 17 feet Volume = 170,000 <u>cu ft</u>

What is the volume of water in a the basin with following characteristics? Answer in gallons.

- Length 200 feet
- Width 50 feet
- Total Depth 20 feet
- Freeboard is 3 feet

Change cubic feet to gallons – keep the units straight!

Volume = 170,000 cu ft * 7.48 gallons

1 cu ft

What is the volume of water in a the basin with following characteristics? Answer in gallons.

- Length 200 feet
- Width 50 feet
- Total Depth 20 feet
- Freeboard is 3 feet

Change cubic feet to gallons – keep the units straight! Volume = 170,000 cu ft * 7.48 gallons 1 cu ft Volume = 1,271,600 gallons or 1.27 x 10^6

What is the volume of the water in the basin with following characteristics? Answer in MG (million gallons)

- Length 200 feet
- Width 50 feet
- Total Depth 20 feet
- Freeboard is 1 meter

What is the water depth (height)? = 20 <u>feet</u> – 1 <u>meter</u> Mixed units! Get all dimensions

in one measurement unit
What is the volume of the water in the basin with following characteristics? Answer in MG (million gallons)

- Length 200 feet
- Width 50 feet
- Total Depth 20 feet
- Freeboard is 1 meter

What is the water depth (height)? = 20 feet – 1 meter * 3.28 feet

Change meters to feet

1 meter

What is the volume of the water in the basin with following characteristics? Answer in MG (million gallons)

- Length 200 feet
- Width 50 feet
- Total Depth 20 feet
- Freeboard is 1 meter

What is the water depth (height)? = 20 feet – 1 meter * 3.28 feet

1 meter

What is the volume of the water in the basin with following characteristics? Answer in MG (million gallons)

- Length 200 feet
- Width 50 feet
- Total Depth 20 feet
- Freeboard is 1 meter

What is the water depth (height)? = 20 feet – 3.28 feet = 16.72 feet

What is the volume of the water in the basin with following characteristics? Answer in MG (million gallons)

- Length 200 feet
- Width 50 feet

With all measurements in feet, now calculate the volume in cubic feet

- Total Depth 20 feet
- Freeboard is 1 meter

Vol = 50 ft * 200 ft * 16.72 ft = 167,200 ft³

What is the volume of the water in the basin with following characteristics? Answer in MG (million gallons)

- Length 200 feet
- Width 50 feet
- Total Depth 20 feet
- Freeboard is 1 meter

$Vol = 167,200 \text{ ft}^3$

167,200 cubic feet * 7.48 gallons 1 cubic foot

Now change cubic feet to gallons

What is the volume of the water in the basin with following characteristics? Answer in MG (million gallons)

- Length 200 feet
- Width 50 feet
- Total Depth 20 feet
- Freeboard is 1 meter
- Vol = 1,250,656 gallons

Vol = 1,250,656 gallons * 1 MG

1,000,000 gal

Math Basics

Now change gallons to million gallons

What is the volume of the water in the basin with following characteristics? Answer in MG (million gallons)

- Length 200 feet
- Width 50 feet
- Total Depth 20 feet
- Freeboard is 1 meter
- Vol = 1,250,656 gallons Round off the answer

Vol = 1,250,656 gallons * 1 MG = 1.25 MG

What is volume of sludge holding tank in gallons? Diameter = 100 feet Height = 100 feet

Vol = 0.785 * d² * height = 0.785 * (100 ft) ² * 20 ft = 157,000 ft³

What is volume of sludge holding tank in gallons? Diameter = 100 ft Sludge depth = 20 ft

 $Vol = 157,000 \text{ ft}^3$

7.48 gallons

157,000 cubic feet * $\frac{1}{1}$ cubic foot

What is volume of sludge holding tank in gallons? Diameter = 100 ft Sludge depth = 20 ft

 $Vol = 157,000 \text{ ft}^3$

7.48 gallons

CUT

157,000 cubic feet *

Version 1.0 & May 2019

What is volume of sludge holding tank in gallons? Diameter = 100 ft Height = 20 ft

 $Vol = 157,000 \text{ ft}^3 * 7.48$

1,174,360 gallons *or* 1.17 MG

Divide by 1,000,000 and round off

Volume of a Cone

1/3 the volume of a cylinder.

Practical Application

What is the water volume (gallons) of the grit chamber if it is 10 feet deep with a diameter of 5 feet?

Practical Application – What About Rounding?

- Tank 1,174,360 gallons or 1.17 MG
 - 1.2 MG "nominal"
- Cone 489 gallons
 500 "nominal" gallons
- It all depends on the use

Volume of a Sphere

3/4 the volume of a cube with the same dimensions

Practical Application – Sphere Volume

What is the volume of the gas holding sphere if the diameter is 50 feet?

Sphere volume = $\frac{3}{4}$ * cube volume Volume = $\frac{3}{4}$ * 50 ft * 50 ft * 50 ft = 0.75 * 50³ ft Volume = 93,750 cubic feet

Calculation Wheels – Refer to ABC Handout

Can also be used without rate or flow Feed in pounds, Volume in MG

Time Out - Percentages

If something is 56%, what is the mathematical (decimal) way to show that number?

Time Out - Percentages

If something is 56%, what is mathematical (decimal) way to show number?

$$56\% = \frac{56}{100} = 0.56$$

Back to the Calculation Wheels

This is where that algebra stuff comes into play

Back to the Calculation Wheels

Rearrange the equation to isolate flow on one side

Make sure the units are correct

Questions, Comments and Suggestions?

Prepared by the Training Coordination Committee, PNWS-AWWA

Section title

subtitle

- Tier 1 info
 - Tier 2 info
 - Tier 3 info

Photo caption

Optional text here

- Tier 1 info
 - Tier 2 info
 - Tier 3 info

Photo caption

Optional text here

Case A

• info

Case B

• info

	Col 1	Col 2	Col 3	Col 4
This	X	Х	X	Х
That	Х	Х	Х	Х
The	Х	Х	Х	Х
Other	Х	Х	Х	Х
Thing	X	Х	Х	Х