

Covington Water District Pipeline Turbine Project

Today's Speakers

Tom Malphrus

Covington Water District tom.malphrus@covington water.com

Andrew Williamson McKinstry andrewwi@mckinstry.com

Mark Nieman, P.E., CEM McKinstry markn@mckinstry.com

Covington Water District is Growing

- Regional Growth
- Population Growth
- Water Demand Growth
- Plans to meet growing population water demand
 - Planned main line addition
 - Planned infrastructure development

Vision of Tomerrow | Action Today

The Plan To Accommodate Growth

- Tacoma Water tap & CWD transmission line
- 16-inch DI line
- 1,425 linear feet
- Terminates at North Tank and serves 660 Zone and Storage Tank
- Turbine located near Administration Building

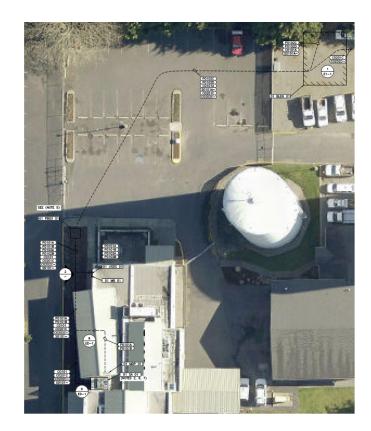
An Innovative Approach

- New Tacoma Water-Tie
 - 3rd feed into the Covington Water District
 - Originally planned for a PRV in a vault
 - Source water at the Howard Hanson Dam
 - Feeds the 660 Zone of CWD
- New pipeline planned through CWD property
- Future storage tank replacement planned for safety and growth

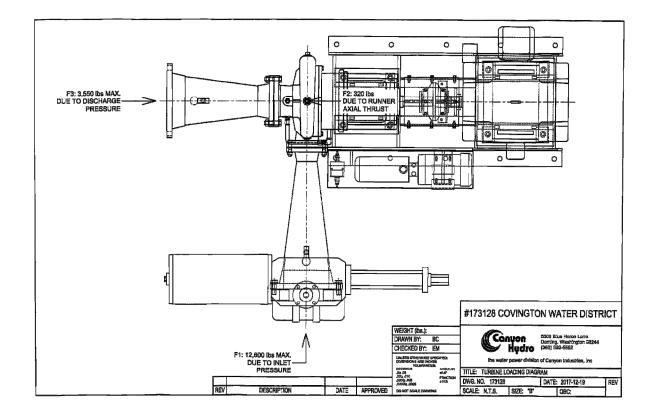
A Perfect Storm of Opportunity

- On-site net-metering shows up as reduced electric consumption from PSE (turbine next to demand)
- CWD operates uniquely with supply flowing in the pipe: 24/7 production
- Ability to offset cost due to larger project build (PRV vault offsets cost of turbine building)
- WA Commerce Energy Conservation Grant (energy and cost savings for the Admin. site; not available if selling power directly to the grid)

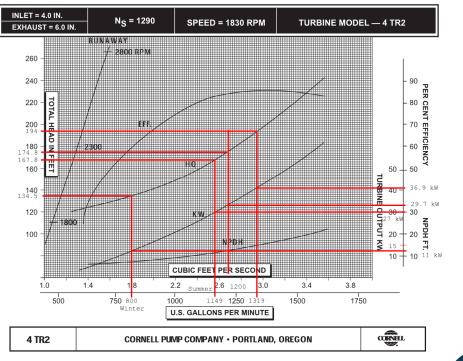
Other Types of Opportunity



- Footprint of turbine building is small considering the rate of production
- Costs controlled and performance guaranteed through Washington ESCO program
- Using a turbine instead of a PRV could capture the losses as electricity generation


Site Details

- Turbine Building near the Administration Building
- Construction process and infrastructure buildout


Turbine Details

Flow Profile

- Technical Specifications
 - How the turbine works
 - Reverse pump
 - System sees it as an orifice plate
 - Acts as a PRV for the system
 - Generator is constant speed at 1800 RPM
 - 8-36 kW output power depending on flow
 - Requires grid-power to operate (induction generator)

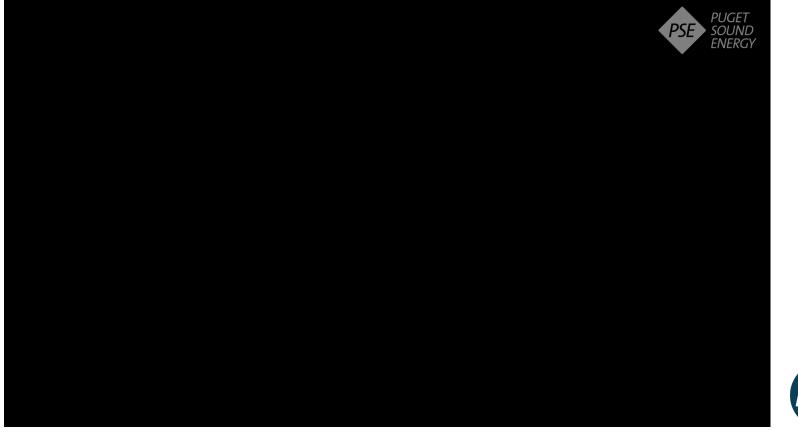
Control Details

• Technical Specifications

- Net-metering
 - Acts just like PV solar panel to grid
 - No inverter
 - Native 3 Phase AC power
 - PSE roles and thoughts
 - Reviewing safety interlocks and relays
 - Installation of net meter
 - Agreement for net meter rate
 - Utility side disconnect inclusion

Making The Utility Connection

- Why we chose this solution (versus other options)
 - Local turbine provider (all Washington-based)
 - Best technology for our specific application and size
 - 174,300 kWh/year with turbine vs. ~20,000 kWh with Solar PV
- Need for bypass/backup and maintenance option
- PRV provisions in line and in parallel


System Backup

- Bypass
- Pressure Relief Valve
- Hydraulic Actuator

Video Break/Intermission

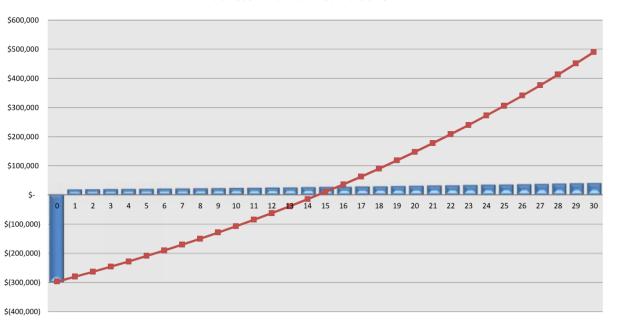
Construction Progress

Expanding Project Scale Through Grants

- Awarded \$79,447 from WA State Department of Commerce in mid-2017
- Commerce Energy Efficiency Grant
- Grant covers nearly 25 percent of turbine installation costs
- Work must be completed in 2017-2019 biennium
- McKinstry handled all grant paperwork with the state

Department of Commerce Innovation is in our nature.

Project Financials


Facility Improvement Measures	Facility	Budget *	Annual Utility Savings	Commerce Grant	Net Customer Cost (with Incentives)	Simple Payback (SPB) (with Grant)
10.03-CWD Provide Water Turbine at New Intertie	Admin Gas and Electric	\$376,749	\$16,066	\$79,447	\$297,302	18.5
30.01-CWD Provide C-4 Intertie Pipeline	Admin Gas and Electric	\$1,926,453	\$0	\$0	\$1,926,453	Needs Based
	Totals	\$2,303,202	\$16,066	\$79,447	\$2,223,755	

*Costs shown are inclusive of construction, engineering, project management, permits, fees, taxes, etc. *Costs also include provisions for future turbine

Project Financials, Part 2

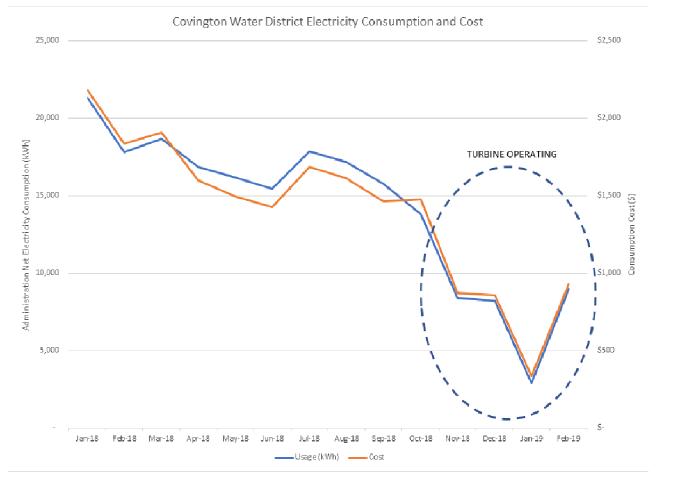
- Grant from WA State Department of Commerce
- Performance contract
 - WA DES Energy oversight
 - Guaranteed 174,342 kWh/year savings
 - Estimated \$16,066/year saved (2018 electric rates)
 - One-year M&V Period
 - \$376,749 Guaranteed Maximum Cost

Annual Cash Flow

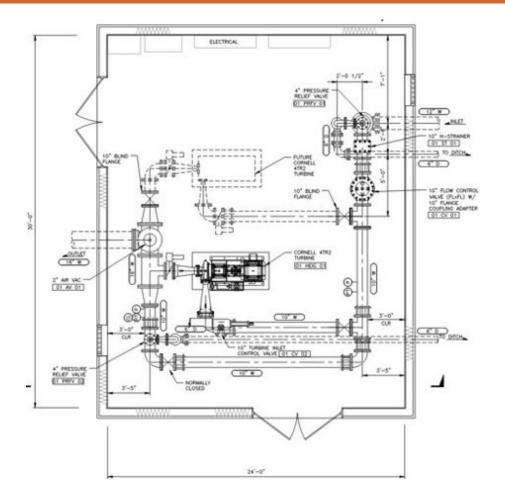
Annual Cash Flow and Cumulative PV

Fiscally Conservative

- GMAX Project Cost: Turnkey delivery
- GMIN Energy Generation
- Payback information
 - Includes today's utility rates, no escalation
 - Includes today's loads not future growth
 - Includes costs for turbine building
 - Includes costs for second turbine provisions


ESPC Advantages

- Single point of accountability: the ESCO
- No requirement to use the lowest bid
- Owner participates in equipment and subcontractor selection
- Funding through energy and utility savings
- Verification of annual energy savings through a M&V program
- Guarantees:
 - Maximum Project Cost
 - Energy/Water Savings
 - Equipment Performance



Verified Performance

Planning for the Future

Finished Product Shots

Opportunities for Replication

Is a project like this right for you?

- 1. Net metering (turbine next to demand)
- 2. Does system flow profile support the turbine financials?
- 3. Are you able to offset cost due to larger project build (PRV vault offset cost of turbine)?
- 4. Any grant opportunities, etc.?

Project Partners

Vision of Tomorrow | Action Today

CONSULTING ENGINEERS

Canyon Hydro

Washington State Department of Enterprise Services

Questions?

