Example Problems Let's work through some practical examples

Version & Date

Prepared by the Training Coordination Committee, PNWS-AWWA

Segment topics:

- Length, area & volumes
- Pressure
- Rates of flow & velocity
- Chemicals & Process

Length, Area & Volumes

Get out your pencils, paper & calculators

If the maximum joint deflection on the bell and spigot joint of an 8-inch ductile iron pipe is 5°, what is the deflection at the end of a stick of pipe with a lay length of 20 feet ?

Photo from Electrosteel Castings, Ltd., Graphic from Ameron

If the maximum joint deflection on the bell and spigot joint of an 8-inch ductile iron pipe is 5°, what is the deflection at the end of a stick of pipe with a lay length of 20 feet ?

20 feet x 12 inches / ft = 240 inches

Sine 5° = 0.0872 (*dimensionless*)

240 inches x 0.0872 = 20.928 inches

If the maximum joint deflection on the bell and spigot joint of an 8-inch ductile iron pipe is 5°, what is the deflection at the end of a stick of pipe with a lay length of 20 feet ?

Math For Operators

W & WW

Question:

If the formula for the radius of curvature for a pipe is: $L/2 \times tan (\Phi/2)$ What is the tightest radius for the 8-inch DIP with 20 foot lay length? L = lay length

W & WW

Question:

Tan (5 / 2) = 0.0437 (dimensionless)

20 feet / 2 x 0.0437 = 228.833 feet

Your new WTP will have 8 filter beds and you are planning on 7 being in service at any time. The flow rate is 8 gal/sf/min for clean bed and 6.5 for a bed that is ready for backwashing. If the beds will be close to square, what are the plan dimensions for a capacity of 40.0 mgd?

W

Photo from City of Lynden, WA

Filter Area

Average capacity = (8.0 + 6.5)/2 = 7.25g/sf/min

7.25 g/sf/min x 60 min/hr * 24 hr/d = 10,440 gal/sf/day

Area required = 40.0 mgd / 10,440 gal/sf/d = 3,831 sf

Area required / filter bed = $3,831 \text{ sf} / 7 = 547 \text{ ft}^2$

Rough dimensions = $(547 \text{ sf})^{0.5}$ = 23.4 ft / side

~ 20 ft * 28 ft = 560 sf (multiples of 4 ft wide forms)

Your new reservoir is to have a active storage capacity of 1 MG and a pressure range of 25 psi. What is the diameter of the reservoir?

W

Graphic from City of Troutdale, OR

Tank diameter

Height range 25 psi x 2.31 ft/psi = 57.75 ft

Volume 1,000,000 gal./ 7.48 gal./ $ft^3 = 133,690 ft^3$

133,690 ft³ / 57.75 ft = 2,415 ft² = tank area

Area = $D^2 \times PI / 4$ rearranged D = (area * 4 / PI)^{0.5}

 $(2,415 * 4 / 3.14159)^{0.5} = 54.29$ ft inside diameter

W & WW

Question:

You've been given a screaming good deal for a new water tank but the Canadian contractor wants to do the job in metric units. You need 500,000 gallons of storage (operational + equalizing + standby). The proposed tanks is 12 meters in diameter x 20 meters to the overflow. Is the tank big enough? If yes, what is the volume of the dead storage?

Is the tank big enough?

Area =
$$12^{2} * 3.14159 / 4 = 113.10 m^{2}$$

Volume =
$$113.10 \text{ m2} \times 20 \text{ m} = 2,262 \text{ m}^3$$

Volume conversion 264.172 gallons / m³

2,263 m³ x 264.172 gallons / m³

597,543 gallons – YES big enough

597,543 gal. – 500,000 gal. = 97,543 gal excess

A lime tank is a cone at the bottom and cylindrical at the top. The cylinder portion is 28 feet tall. The cone has a minimum diameter of 2 feet and is 12 feet tall. What is the volume of the tank in cubic feet to 3 significant figures?

WW & WW

A lime tank is a cone at the bottom and cylindrical at the top. The cylinder portion is 28 feet tall. The cone has a minimum diameter of 2 feet and is 12 feet tall. What is the volume of the tank in cubic feet to 3 significant figures?

Cylinder volume =
$$\Pi x d^{2} / 4 x H$$

Cone volume = $(d_1^{^2} + d_2^{^2}) / 2 \times \Pi / 4 \times H$

$$\Pi \times 15^{2} / 4 \times 28 + (15^{2}+2^{2})/2 \times \Pi/4 \times H$$

W & WW

Question:

Convert 16,912,000 liters to acre-feet

Photo from the Town of Friday Harbor

Convert 16,912,000 liters to acre-feet

Liters \rightarrow gallons \rightarrow cubic feet \rightarrow acre-feet

16,912,000 liters x 0.2642 gal/liter = 4,468,150 gal

4,468,150 gallons / 7.48 gallons/cf = 597,346 cf

597,346 cf / 43,560 cf/acre-feet = 13.7138 acre-ft

13.7 acre-feet

W

WW & WW

Question:

A new section of pipe is 16" in diameter and 550 feet long. How many gallons does the pipe contain? And why do we care?

Photo from Kana Pipeline, Inc.

A pipe is 16" in diameter and 550 feet long. How many gallons does the pipe contain?

 $1.33 \text{ ft}^2 \times \text{PI} / 4 \times 1 \text{ ft} = 1.39 \text{ ft}^3 / \text{ft}$

 $1.39 \text{ ft}^3 / \text{ft} \times 550 \text{ ft} = 764.11 \text{ ft}^3$

764.11 ft³ x 7.48 gal. / ft³ = 5,715.5 gallons

5,715.5 gallons – round off to 5,720 gallons

WW & WW

Question:

What is the diameter of a tank with a circumference of 408.2 ft?

Photo from DN Tanks

WW & WW

Question:

What is the diameter of a tank with a circumference of 408.2 ft?

408.2 feet / pi = 408.2 feet / 3.14159 =

= 129.93 feet in diameter

~130 feet

What is the internal surface area of a cylindrical tank (bottom, top, and the cylinder wall), if it is 125.0 ft in diameter and 48.5 ft high

Top = Area 1

Area 1 = 0.785^{*} dia² Area 1 = $0.785 \times (125 \text{ ft})^{2}$ Area 1 = 12,265 sq ftTop & Bottom = $2 \times 12,265 \text{ sq ft}$ Top & Bottom = 24,530 sq ft

What is the internal surface area of a cylindrical tank (bottom, top, and the cylinder wall), if it is 125.0 ft in diameter and 48.5 ft high

Cylinder wall = Area 2

Area 2 = circumference x ht Area 2 = Π x diameter x ht Area 2 = 3.14 x 125 x 48.5 Area 2 = 19,036 sq ft

What is the internal surface area of a cylindrical tank (bottom, top, and the cylinder wall), if it is 125.0 ft in diameter and 48.5 ft high

43,600 sq ft

Pressure

Often the limiting factor

What is the pounds per square inch pressure at the bottom of a tank, if the water level is 38.29 ft.?

Photo from City of Marysville

W

What is the pounds per square inch pressure at the bottom of a tank, if the water level is 38.29 ft.?

1 foot of water = 0.433 psi

38.29 ft * 0.433 psi / ft water = 16.6 psi

16.6 psi ~ 17 psi

The pressure at a fire hydrant is 171 feet. What is the pressure in pounds per square inch (psi)?

W

Photo from City of Palm Springs

The pressure at a fire hydrant is 171 feet. What is the pressure in pounds per square inch (psi)?

74 psi

W

What is the pressure head at a fire hydrant in feet, if the pressure gauge reads 121 psi

W

Photo by Jeff Lundt

What is the pressure head at a fire hydrant in feet, if the pressure gauge reads 121 psi

1 foot of water = 0.433 psi

121 psi / 0.433 psi / ft water = 279.45 ft

~280 ft

Determine the pressure in psi at the bottom of an alum storage tank if the tank's level is 8.95 feet and alum density is 11.32 lb / gallon **W & WW**

Photo from DN Tanks

Determine the pressure in psi at the bottom of an alum storage tank if the tank's level is 8.95 feet and alum density is 11.32 lb / gallon

Pressure is the weight of the fluid above the point of measurement

11.32 lb/gallon x 7.48 gallons/cf = 84.67 lb/cf

8.95 feet x 84.67 lb/cf = 757.8 lb/sf

757.8 lb/sf / 144 in²/sf = 5.2625 lb/in² or psi

Rates of Velocity & Flow

How fast?

Water flows at a velocity of 3.75 fps in a 10-in. diameter pipe. If the pipe changes from the 10-in. to a 12-in. pipe, what will the velocity be in the 12in. pipe?

Water flows at a velocity of 3.75 fps in a 10-in. diameter pipe. If the pipe changes from the 10-in. to a 12-in. pipe, what will the velocity be in the 12in. pipe?

Use the ratio of the areas (w/o pi & constant)

$$10^2 / 12^2 = 100 / 144 = 0.694$$

3.75 fps x 0.694 = 2.60 fps

2.6 fps

WW & WW

Question:

Water is flowing in a pipeline at a rate of 2.65 cu/ft per sec. What is the flow rate in gallons per min.?

Water is flowing in a pipeline at a rate of 2.65 cu.ft. per sec. What is the flow rate in gallons per min.?

2.65 cfs x 7.48 gal/cf x 60 sec/min. = 1,189.3 gpm

1,190 gpm

An 18-inch diameter distribution pipe delivers 988,000 gallons in 24 hours. What is the average velocity during the 24 hour period in feet / second?

Photo from 123RF.com

W

An 18-inch diameter distribution pipe delivers 988,000 gallons in 24 hours. What is the average flow during the 24 hour period in feet / second?

 $(18 \text{ inches } / 12 \text{ inch } / \text{ft})^2 \times \text{PI} / 4 = 1.77 \text{ sf}$

24 hr x 60 min / hr x 60 sec / min = 86,400 sec

988,000 gal / 7.48 ft³ / gal = 132,085.6 ft³

 $132,085.6 \text{ ft}^3 / 1.77 \text{ sf} / 86,400 \text{ sec} =$

0.87 ft / sec

A rectangular section channel is 42" wide and the water is a depth of 28". You toss a float in and determine that it travels 30 feet in 15 seconds. What is the flow rate in ft³/sec? gpm? *Dimensions in inches, change to feet*

A channel is 42" wide and the water is a depth of 28". You toss a float in and determine that it travels 30 feet in 15 seconds. What is the flow rate in ft³/sec? gpm?

```
Flow = Velocity x Area
```

```
Area = 2.3 \text{ ft x } 3.5 \text{ ft}
Area = 8.05 \text{ sq ft}
```


An 8-inch diameter pipe is flowing full at 600 gpm, what is the velocity in ft/sec?

An 8-inch diameter pipe is flowing full at 600 gpm, what is the velocity in ft/sec?

Flow (Q) = Velocity x Area

8 inches = 8/12 foot = .67 foot

W & WW

 $600 \text{ gpm} = \text{Velocity x } (.67 \text{ ft})^2 \text{ x } .785$

An 8-inch diameter pipe is flowing full at 600 gpm, what is the velocity in ft/sec?

Flow (Q) = Velocity x Area $600 \text{ gpm} = \text{Velocity x } (.67 \text{ ft})^2 \text{ x } .785$ $600 \text{ gpm} = \text{Velocity x } (.67 \text{ ft})^2 \text{ x } .785$ $(.67 \text{ ft})^2 \text{ x } .785$ $(.67 \text{ ft})^2 \text{ x } .785$

8 inches = 8/12 foot = .67 foot

An 8-inch diameter pipe is flowing full at 600 gpm, what is the velocity in ft/sec?

Flow (Q) = Velocity x Area

An 8-inch diameter pipe is flowing full at 600 gpm, what is the velocity in ft/sec?

Flow (Q) = Velocity x Area $600 \text{ gpm} = \text{Velocity x } (.67 \text{ ft})^2 \text{ x } .785$ $600 \text{ gpm} = \text{Velocity x } (.67 \text{ ft})^2 \text{ x } .785$ (.67 ft)² x .785 (.67 ft)² x .785 $= 80.2 \text{ cfm} \implies \frac{80.2 \text{ cu ft1 min}}{\text{min } 60 \text{ sec}} = 1.3 \text{ cfs}$ 600 gal | 1 cu ft min 7.48 gal

An 8-inch diameter pipe is flowing full at 600 gpm, what is the velocity in ft/sec?

Chemicals & Process

More of the same but with a twist

Calculate the log removal for a water treatment plant if the samples show a raw water coliform count of 295/100 ml (through extrapolation) and the finished water shows 2/100 ml?

W

Calculate the log removal for a water treatment plant if the samples show a raw water coliform count of 295/100 ml (through extrapolation) and the finished water shows 2/100 ml?

Log10 (147.5) = 2.1688 ~ 2.2

2.2 log removal

W & WW

Question:

A 10 foot inside diameter chemical tank drops 4.31 inches in exactly 3 hours. What's the pumping rate for the chemical in gpm?

Photo from City of Anacortes

A 10 foot inside diameter chemical tank drops 4.31 inches in exactly 3 hours. What's the pumping rate for the chemical in gpm?

10 ft^2 x Π /4 = 78.53 sf

4.31 inches / 12 inches / ft = 0.3592 ft

78.53 sf x 0.3592 ft x 7.48 gal / $ft^3 = 210.98$ gal.

210.98 gal / 3 hr / 60 min./hr = 1.17 gpm

W & WW

How many pounds per day of 65% calcium hypochlorite are required for maintaining a 2.5 mg/l dosage for a 2,575 gpm treatment plant?

Photo from Kemcore

How many pounds per day of 65% calcium hypochlorite are required for maintaining a 2.5 mg/l dosage for a 2,575 gpm treatment plant?

2.5 mg / L / 0.65% = 3.85 mg calcium hypo / L

 $3.85 \text{ mg/L} / 1000 \text{ mg/g} / 1000 \text{ g} / \text{kg x } 2.2 \text{ lb} / \text{kg} / 0.264 \text{ L} / \text{gallon} = 3.45 \text{ x } 10^{-5} \text{ lb} / \text{gallon}$

 $2,575 \text{ gpm x } 60 \text{ min/hr x } 24 \text{ hr/day} = 3.71 \text{x} 10^6 \text{ gpd}$

 3.71×10^{6} gpd x 3.45×10^{-5} lb / gallon

120 lb / day

Determine the percent mineral rejection from a reverse osmosis plant if the feedwater contains 1,230 mg/l total dissolved solids (TDS) and the product water contains 135 mg/l TDS.

W

Photo from Seattle Yacht Club, Henry Island

Determine the percent mineral rejection from a reverse osmosis plant if the feedwater contains 1,230 mg/l total dissolved solids (TDS) and the product water contains 135 mg/l TDS.

Note all the units are the same and cancel (mg/l) so we get a unitless number as a ratio and assign % to it.

A 1.81 MG reservoir is being disinfected with a chlorine dosage of 9.75 mg/l. If the sodium hypochlorite is 11.5% available chlorine, how many pounds are needed?

Photos from Roche Harbor & Silver Lake Water & Sewer District

****\/

A 1.81 MG reservoir is being disinfected with a chlorine dosage of 9.75 mg/l. If the sodium hypochlorite is 11.5% available chlorine, how many pounds are needed?

WW & WW

Question:

How many pounds of chlorine gas are necessary to treat 4,000,000 gallons of water at a dosage of 2 mg/L?

Photo from City of Anacortes

Version - 1.0 & January 2019

Math For Operators

How many pounds of chlorine gas are necessary to treat 4,000,000 gallons of water at a dosage of 2 mg/L

Answer is 67 lb

<u>\\/ Q. \\/\\/</u>

Question:

How many pounds of 12.5% sodium hypochlorite is necessary to treat 4,000,000 gallons of water at a dosage of 2 mg/L?

Photo from City of Marysville

W & WW

Question:

How many pounds of 12.5% sodium hypochlorite is necessary to treat 4,000,000 gallons of water at a dosage of 2 mg/L

Answer is 534 lb (533.76)

WW & WW

Question:

How many pounds of 0.8% onsite generated sodium hypochlorite are necessary to treat 4,000,000 gallons of water at a dosage of 2 mg/L?

Photo from City of Marysville

How many pounds of chlorine gas are necessary to treat 4,000,000 gallons of water at a dosage of 2 mg/L

Answer is 8,340 lb (= 1,115 gallons)

Questions, Comments and Suggestions?

Prepared by the Training Coordination Committee, PNWS-AWWA

Section title

subtitle

- Tier 1 info
 - Tier 2 info
 - Tier 3 info

Photo caption

Optional text here

- Tier 1 info
 - Tier 2 info
 - Tier 3 info

Photo caption

Case A

• info

Case B • info

	Col 1	Col 2	Col 3	Col 4
This	Х	Х	Х	Х
That	Х	Х	Х	Х
The	Х	Х	Х	Х
Other	Х	Х	Х	Х
Thing	Х	Х	Х	Х