Iron, Manganese, and Sulfide Removal Options and Updates

Milt Larsen, PE

Water Quality Standards

Initial

1962 USPHS

AWWA ideal

Problems with (White)

Treatment goal (Knocke & Tobiason) Fe + Mn < 0.3 mg/l

Fe < 0.3 mg/l Mn < 0.05 mg/l

Fe < 0.05 mg/l Mn < 0.01 mg/l

Mn > 0.02 mg/l

< 0.015 mg/l

Fe & Mn Occurrence

- Fe 5% of the earth's crust
- Mn 0.1% of earth's crust
- Occurrence in water due to reducing bacteria in the aquifer or sediment of lakes & reservoirs
 - Dissolved in anaerobic reducing conditions
 - Dissolved in water with elevated CO₂
- Other sources
 - Fe coagulants
 - Water treatment residuals
- Frequently found with H₂S, NH₃, and As

Iron and Manganese

Problems

- Dirty water
- Stained fixtures
- Stained laundry
- Metallic tastes
 - Fe > 0.2 mg/l
 - Mn > 0.1 mg/l
- Scavenger adsorbs metals

Iron and Manganese

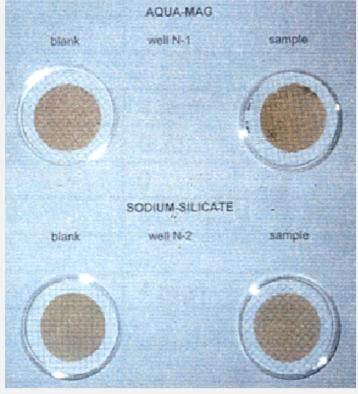
Bacterial growth in water system

- Taste & odor
- Reduced hydraulic capacity
- Clog well screens and pumps
- Increased Cl₂ demand

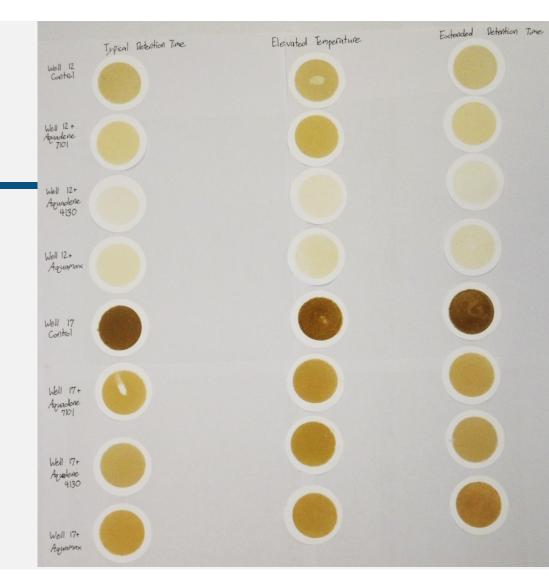
Distribution System Cleanup

Hydrogen peroxide & flushing

- Seaside, CA (1978) & Alberta
- 50 to 100 mg/l H₂O₂
- More effective than chlorine
- Flushed next morning
- Switched to chloramines


Iron & Manganese Treatment Options

- Sequestering
- Oxidation/Filtration
- Adsorption/Catalytic Oxidation
- Biological


Iron & Manganese Sequestering

- Sequestering agent
 - Polyphosphates
 - Silicates
- Temporarily tie up Fe & Mn
- Break down with
 - Time
 - Elevated Temperature

Sequestering Evaluation

- Wholesale purveyor
- 65 CFS Wellfield
- Well 12
 - Fe <0.05 mg/l
 - Mn 0.09 mg/l
- Well 17
 - Fe <0.05 mg/l
 - Mn 0.18 mg/l
- 1 L samples
- Chloraminated supply

Oxidation Filtration

- Historically most commonly used
- Less frequent today
- Oxidants
 - O₂ and Cl₂ for Fe
 - KMnO₄ or NaMnO₄ for Mn
 - Handling issues
 - Ozone
 - Chlorine dioxide

Sodium Permanganate

- Strong oxidizer
- Fast reaction
- More expensive than chlorine
- Potential colloidal Mn formation
- Beneficial with elevated silicate concentration
- Pink water if overfed
- Color monitors to minimize overfeeding

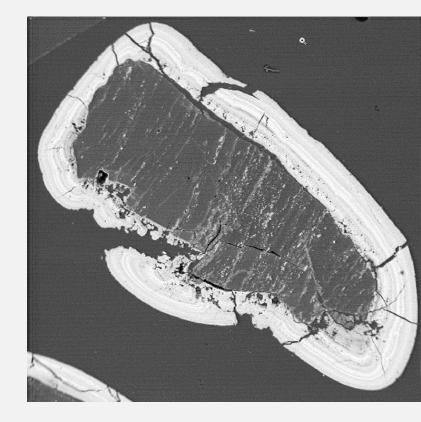
Oxidation/Filtration

- Goal is to produce filterable precipitates
- Filter media
 - Greensand with anthracite cap
 - Low loading rates
 - 3 to 5 gpm/SF

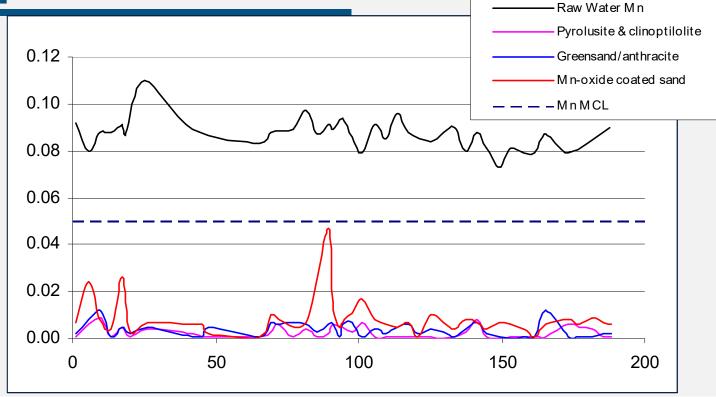
Adsorption/Catalyti c Oxidation

- Two-step process
 - Mn adsorbed then oxidized
 - Fe oxidized & filtered
- Oxidant Cl₂ or NaOCl
- KMnO₄ with high SiO₂
- Iron preoxidized and filtered
- High loading rates
 - 8 to 12+ gpm/SF
 - Smaller footprint

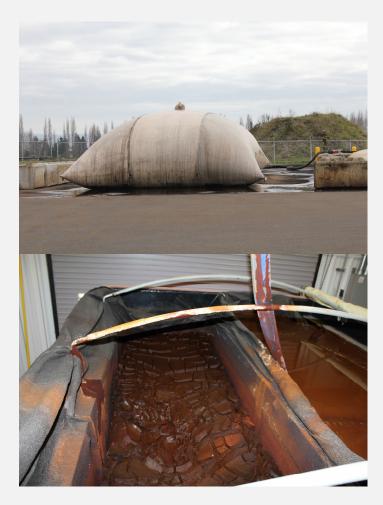
Adsorption/Catalyti c Oxidation


- Filter effluent free Cl₂
 - 0.5 mg/l min
 - 1.0 mg/l typical
- With low Fe, most Mn removal occurs in the upper 12 inches

Alternative Filter Media


- Pyrolusite
- Manganese Greensand
- GreensandPlus with Anthracite Cap
- Manganese Oxide Coated Silica Sand with Anthracite Cap
- Proprietary (Filtronics Electromedia, Pureflow)

Source: Tobiason et al, 2007


Renton Media Comparison

Backwasn Handling & Disposal

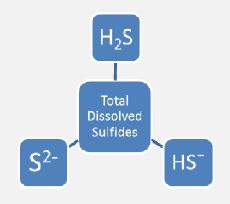
- Backwash Water
 - Decant & Recycle
 - Infiltrate
 - Sewer
- Backwash Solids
 - Sewer
 - Filter Bottom Dumpster
 - Geotextile Bag
 - Mechanical Dewatering

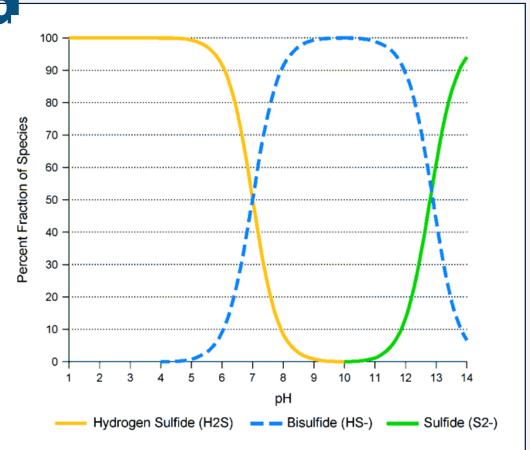
Backwash Solids

Fe & Mn scavenge metal from the groundwater

Lakewood Water District

As	0.22 mg/L	
Zn	7.4 mg/L	
<u>Woodburn, OR</u>		
As	0.006-0.012 mg/L	
UWCD		
As	0.95 mg/kg	
Boron	8.25 mg/kg	
Copper	11.4 mg/kg	
Zinc	17 mg/kg	




Sulfides

- Result of bacterial activity in aquifer
- Commonly found in water containing Fe and Mn
- Problems
 - Taste and odor
 - 0.5 ppbv threshold odor (50% of population)
 - 0.5 to 1 ppmv musty/swampy
 - > 1 ppmv rotten egg
 - Sulfur metallic
 - Polysulfide (HS_n-) burnt rubber
 - High chlorine demand
 - Biomediated corrosion of iron pipe

Total Dissolved Sulfides

- pH dependent
- All forms contribute to undesirable taste
- H₂S can be stripped by aeration
- HS⁻ cannot be stripped by aeration

Sulfide Treatment Options

- Aeration
- Catalytic GAC
- Oxidation
 - yields sulfur, polysulfides, sulfites, thiosulfates, sulfate end products
- Oxidation/Filtration
- Chlorination, sulfite addition to form thiosulfate, rechlorination

Air Stripping Hydrogen Sulfide

- H₂S stripped at acidic pH
 - Acid feed may be req'd
 - NaOH to readjust pH
 - Offgas H₂S odor
- Scotts Valley
 - Treating offgas with biotrickling filter/GAC

Sulfide Oxidation

Chlorine oxidation

- 2.1 mg Cl₂/mg sulfide to oxidize to S^o
- 8.3 mg Cl_2 /mg sulfide to oxidize to SO_4^{2-}
- Polysulfide formation
 - Colloidal sulfur and polysulfides initially formed
 - $_{\circ}$ SO₂ or sodium bisulfite to form thiosulfate
 - Rechlorinate to convert to SO₄²⁻

to Sulfate with GAC

- Adsorbs H₂S
- Catalyzes oxidation of H₂S to SO₄²⁻
- Requires dissolved O₂
- 5 to 10 minute EBCT
- Excess dissolved O₂ to maintain aerobic conditions
- Backwash 8 to 10 gpm/SF for 1/2 hr
- Bacterial growth
- Operating since 2006

Prior Water Treatment Work

- Sulfides 0.12 to 0.20 mg/L
 - Elevated pH 8.1 to 8.4
- Manganese 0.07 to 0.12 mg/L
- Ammonia 0.4 to 0.5 mg/L
- High chlorine demand
- High H₂SO₄ & NaOH doses
- Water quality & odor complaints
- H2S corrosion

Taste & Flavor Evaluation

- Panel of City personnel and Maplewood customers
- Taste ranking:
 - 1 Awful 2 – Poor 3 – Mediocre 4 – Good
 - 5 Very Good

Average Taste Scores

Water	Same Day	Next Day
Bottled Water	3.9	
City Hall	4.1	
Maplewood (shops)	3.3	
Pyrolusite	2.1	2.9
Greensand	2.7	2.9
Silica sand	2.6	3.1
GAC + greensand	3.5	3.9
Clino+pyro+bisulfite+Cl ₂	1.9	3.8

Questions and Discussion

