

WELL **REHABILITATION IN ALASKA'S BUSH COUNTRY: TECHNIQUES TO IMPROVE** WELLFIELD PRODUCTIVITY

2019 PNWS-AWWA

Ida Fischer, HDR, Hydrologist

FSS

© 2016 HDR, Inc., all rights reserved.

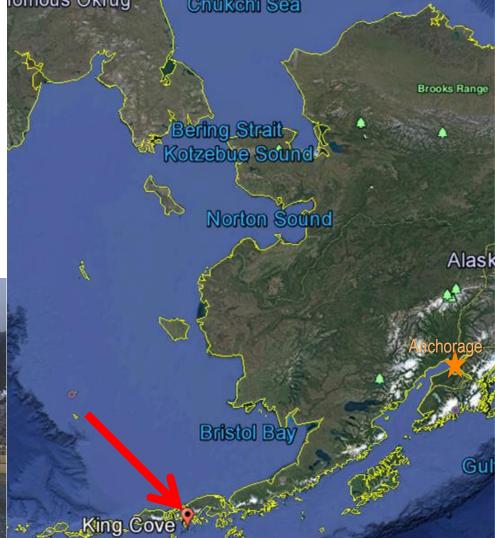
CASE STUDY KING COVE, ALASKA

◎ ٵ Project Background

02 Well Problems

03 Diagnostic Techniques

04 Well Rehabilitation


05 Key Points

PROJECT BACKGROUND

- King Cove, Alaska
- Remote location on Alaska Peninsula

PROJECT MOTIVATION

- 5 well system
- Original production capacity 1.0 MGD
- Capacity pre-rehabilitation 0.7 MGD
- Increasing demand

Well	Well 2	Well 6	Well 8	Well 9	Well 16
1996-1999 Pumping Rates (gpm)	100	300	100	100	100
Pumping Rate in June 2017 before Rehabilitation (gpm)	130	30-50	0	NA	10

OPTIONS TO INCREASE SUPPLY

Alternative	Rehabilitation	5 New Wells
Cost	\$170,000	\$1,800,000
Time Required	5 months	1 - 2 years
Advantages	Lower costShort time frame	 Potentially more production capacity Potentially better water quality
Disadvantages	 May not fully restore production capacity Rehabilitation may be needed again in 10 - 20 years Continue to require water treatment for iron and manganese 	Higher cost

WELL PROBLEMS

Causes of deterioration

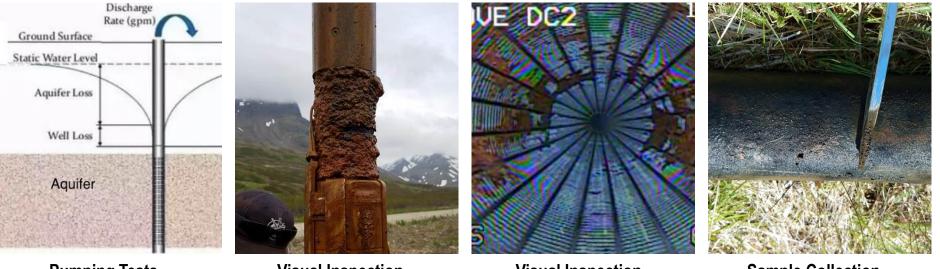
- Decline in yield
 - $_{\circ}$ Dewatering
 - $_{\circ}~$ Pump wear or impeller detachment
 - Plugging/encrustation
- Failure
 - $_{\circ}$ Corrosion
 - o Subsidence/earthquake
 - $_{\circ}$ Improper installation
- Water Quality Decline
 - $_{\circ}$ Biofouling
 - $_{\circ}$ Contamination
 - $_{\circ}$ Corrosion

CORROSION

- Screen slot enlargement
 - ➤ Sanding
- Strength reduction
 - Collapse of well screen or casing
- Re-deposition of corrosion products
 Screen blocking
- Decrease in water quality
- Depends on:

 $\circ \ \text{pH}$

- $\circ\,\,\text{Redox}$ conditions
- $_{\odot}\,$ Hydrogen sulfide


PLUGGING/ ENCRUSTATION

- Deposition on screen, sand pack, or formation
- Precipitation of minerals: calcium or magnesium carbonates, ferric or magnesium hydroxides, sulfate salts, manganese oxide
- Depends on:
 - \circ Turbulence
 - Oxygen entrainment
 - $\circ~$ Microbial oxidation
- Deposition of fines
 - $\circ~$ Failure to develop
 - Improper filter pack gradation
 - $_{\odot}~$ Improper screen size

IDENTIFYING THE PROBLEM

Diagnostic Techniques

Pumping Tests – Specific capacity Visual Inspection – Inspection of column pipe and pumps Visual Inspection -Video logging Sample Collection – Mineral scale and water

CAUSES OF WELL YIELD DECLINE

VISUAL INSPECTION: Formation of biological slime and mineral encrustation

SCALE MINERAL ANALYSIS:

Well 9 – deposits of manganese Wells 2, 6, 8, 16 – deposits of iron, manganese, calcium and decomposed organic matter (biological slime)

- WATER QUALITY ANALYSIS:

High Iron: Wells 2, 8, 9, 16 High Manganese: Wells 2 and 9 High Calcium: Wells 2, 6, 9, 16

			Drinking	Drinking	Delta Creek Wells					
Parameter	Units	LOQ /CL	Detect. Limit	Water	2	6	8	9	16	
		Std ⁽¹⁾		Std ⁽¹⁾	6/14/17	6/14/17	6/13/17	6/13/17	6/13/17	
	Metals (Dissolved)*									
Calcium	µg/L	500	150	N/A	10800	10100	4370	94700	11400	
Iron	µg/L	250	78	300	582	U	386	896	764	
Manganese	µg/L	1	0.31	50	60	14.3	47.6	913	24.8	

TREATMENT PLAN

- Scale and water quality analysis to determine chemistry
- Amount of chemicals dependent on water volume in well
 - $_{\circ}~$ Depth to water
 - $_{\circ}~$ Casing diameter
- Field procedure

DavidTHansonAssociates				
Field Procedure-Revised				

To: HDR, John	Koreny From: Dave Hanso	on Date: July 6 ,2017	Project: King Cove AK Wells #8, 9, & 16
byproduct. This recommended a	plugging requires a Muriatic or h e based upon these concentration	ydrochloric acid and Unicid Catal ons. To simplify treatment, I use	he screen is due to Electrolysis as a corrosion lyst combination to dissolve. The calculations d the dimensions from Well #9. I'm assuming nis treatment, please call. Thank you.
Well # We	II Information	Initial Treatment	
Sc	reen or bore hole info	Product recommended	±
8" (ia, 85' total depth - 25' static	HCI: 50% of total volume =	80 gal
= 6	0' water column or 156 gal H2O	5% Unicid Catalyst: 0.13 ga	al/ft x 60' = 8 gal
Total Chemist	ry recommended		
HC	: 80 gallons		
Uni	cid Catalyst: 8 gallons total for th	he well. NOTE: These are r	ecommendations PER WELL.

Recommended Field Procedure for cleaning the well

- Step 1 Physical Cleaning: If cleaning the pump, call for recommendations. Pull pump. Wire brush the casing/screen to bottom of well 4-5 times. Use an 8° Steel WireHog Casing Brush to the top of screen. Then use a 6° steel WireHog Casing Brush to the bottom. When done brushing, airlift from the bottom of the well and divert to a tank for disposal if required. NOTE, if using air lifting for development, leave this brush assembly 3° off the bottom for development (Step 3).
- Step 2 Installing chemistry: IF < 200 water: Pour 70 lbs of HCl into the well from surface, followed by 8 gal gal of Catalyst.
- Step 3 Development: Start development immediately. BEST OPTION: Use a surge block but operate in the screen area only. A block speed of 2-3/second is important to gain velocity through the screen. Start at the bottom of the well screen and work upwards in 3' or 5' increments spending 15 minutes per increment. When reach the top of screen, repeat this procedure for 2-5' hours. Monitor pH/color with a bailer within the middle portion of the screen. Note: this option may be difficult without a cable tool rig. Use a 6'' surge block. Airlift debris when when done. If debris enters into the screen, you can bail to determine if debris or sand/silts. OPTION: Air lift the chemistry from the bottom of the well upwards without blowing chemistry out of the well. Use a simple quick release gate valve on the air line to the well. Shut this gate valve, engage the air, and when chemistry reaches 7-10' from surface, shut the air off from the compressor and open this gate valve releasing pressure from this line. Chemistry will fall for two directional development. Repeat for 3 hours. Monitor chemistry with a ball check bailer from the bottom of the well. See Monitoring. Note, in a 10' long screen, this type of development has a tendency to allow acidic flow out into the aquifer in areas of an open screen and may not be as effective as the localized development of a surge block.

TREATMENT PROCESS

Removal of Pump and Pipe

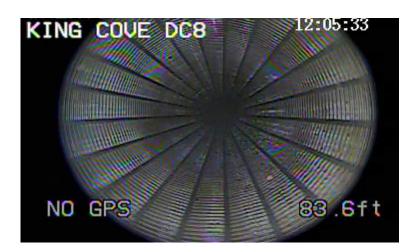
Brushing

Developed with air + Airlift debris from well

Chemical Treatment

CHEMICAL TREATMENT

- Specified chemicals were applied to the well based on scale analysis
 - Blended treatment "Unicid"


 \circ HCl

- Amount of chemicals dependent on water volume in well
- Monitor pH

TREATMENT PROCESS (CONTINUED)

- Clean pump
- Video Inspection
- Reinstallation
- Disinfection

CHECK YOUR WORK – PUMP TESTS

	Well	Well 2	Well 6	Well 8	Well 9	Well 16
	1996-1999 Pumping Rates (gpm)	100	300	100	100	100
	Pumping Rate in June 2017 before Rehabilitation (gpm)	130	30-50	0	NA	10
After	Pump Test Rate (gpm)	109	150	100	180	107
Rehab	Estimated Future pumping Rate (gpm)	250-320	160	70	180	90

LESSONS LEARNED

- Planning and teamwork are key
- Beware the bear!

KEY TAKE-AWAYS

- Well rehabilitation is generally cost effective and extends the operating life of a well
- Keep good records
 - $_{\circ}~$ Well details (design, completion)
 - Operating history (water levels, discharge rate, efficiency)
 - Maintenance history (pump replacement)
- Appropriate treatment for the well
- Don't wait too long (extensive and hardened mineralization)

ACKNOWLEDGEMENTS

- City of King Cove Staff
- Wheaton Water Wells
- David Hanson, David T Hanson Associates

Citations:

Ministry of the Environment. Flowing Artesian Wells. ISBN 978-0-7726-7034-2.

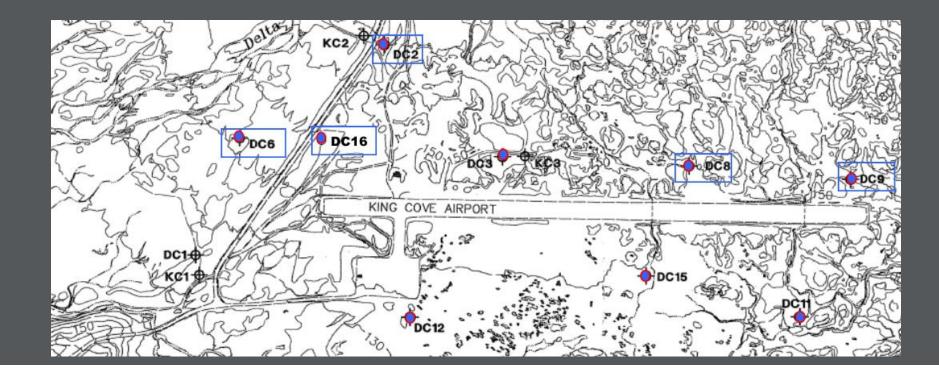
http://www.env.gov.bc.ca/wsd/plan_protect_sustain/grou ndwater/flowing_artesian_wells.pdf

THANK YOU

FJS

KEY TAKE-AWAYS

- Well rehabilitation is generally cost effective and extends the operating life of a well
- Keep good records
 - $_{\circ}$ Well details (design, completion)
 - Operating history (water levels, discharge rate, efficiency)
 - Maintenance history (pump replacement)
- Appropriate treatment for the well
- Don't wait too long (extensive and hardened mineralization)



QUESTIONS? IDA FISCHER, HDR IDA.FISCHER@HDRINC.COM

WESCOTT BOTT, HDR WESCOTT.BOTT@HDRINC.COM

SUPPORTING SLIDES

AREA TOPOGRAPHY MAP

ESTIMATING PUMPING RATE

Well	Well 2	Well 6	Well 8	Well 9	Well 16	
Groundwater Levels and Pumping Rates During Pump Tests						
Static Depth to Groundwater, Octo 2017 (feet)	ober 36.06	15.04	48.42	42.13	20.72	
Pumping Test Flow Rate (gpm)	109	150	100	180	107	
Duration of Pumping Test (hrs:min)	23:31	24:32	57:53	23:09	24:18	
Maximum Depth to Groundwater Durin Pumping (feet)	4 0.85	30.35	64.58	59.13	45.97	
Maximum Groundwater Drawdown Duri Pumping (feet)	ng 4.79	15.31	16.16	17.00	25.25	
Time to Achieve Maximum Drawdown (hrs	:min) 23:31	23:42	57:53	23:09	23:27	
Depth to Top of Well Screen (feet btoo	;) 64	47	71	76	65	
Available Drawdown (feet) = 0.5 * (Depth to of Screen-Static Groundwater Depth)	- 14.0	16.0	11.2	16.9	22.1	
Specific Capacity (gpm/foot drawdowr	1) 22.76	9.80	6.19	10.59	4.24	
	Future Estimated Well F	Pumping Rates				
Estimated Max. Long-Term Pumping Ra (gpm) = Specific Capacity x Available Drawdown ¹		160	70	180	90	

REHABILITATION VS. REPLACEMENT

Alternative Name	Option 1 Rehabilitation of Wells 2, 6, 8, 9 and 16	Option 2b 5 New Wells
Description	Mechanical and chemical treatment to remove encrusted minerals from well screens and improve production	Construction of five new wells, 2,500 feet of conveyance pipeline.
Potential Supply (gpm)	Up to 600 gpm assuming full rehabilitation, not including well 9 (poor water quality)	1,000 gpm (assuming 200 gpm per well)
Cost	\$42,000 for Phase I Up to \$121,000 for Phase II (City can self perform some work if desired) \$163,000 total.	\$1,800,000
Time Required	2-4 months	1-2 years
Probability of Success	Medium to High	Medium to High
Reliability of Supply	Medium to High (rehabilitation likely required again in 10 to 20 years)	High (assumes better water quality)
Advantages	 Lower cost compared to other options. Short-time frame, easy to implement for summer 2017. 	 Same as Option 2a, but more supply capacity.
Disadvantages	 There is a risk rehabilitation may not fully restore production capacity. Rehabilitation may be needed again in 10 to 20 years if wells encrust again. Water treatment will continue to be required for high iron and manganese concentrations in these wells. 	• Higher cost.

REPLACEMENT COST BREAKDOWN

			5 Well Option 5 Wells @ 200 gpm each = 1,000 gpm	
Item	Unit	Unit Cost	Quantity	Total
Mob/demob drill rig	LS	\$76,000	1	\$76,000
Access road, rough ¹	LF	\$20	2500	\$50,000
10" x 120' steel cased well, surface seal, 20' ss screen	EA	\$45,000	5	\$225,000
Permanent sub pump 200 gpm	EA	\$5,700	5	\$28,500
Pitless adaptor	EA	\$2,500	5	\$12,500
Drop pipe and wire, 100' per well	FT	\$65	500	\$32,500
Conveyance pipe (HDPE)	LF	\$30	2500	\$75,000
Control wiring	LF	\$20	2500	\$50,000
New Booster Pump	EA	\$75,000	1	\$75,000
Booster Pump Control Integration	LS	\$50,000	1	\$50,000
Controls/Electrical Shed at Well	EA	\$5,000	5	\$25,000
Well Pump Controls at WTP	LS	\$30,000	1	\$30,000
Modifications at WTP ²	LS	unknown	0	unknown
Subtotal Well Drilling				\$301,000
Well Drilling Contingency @ 15%				\$45,150
Total Well Drilling				\$346,150
Subtotal Construction				\$428,500
Construction Contingency @ 25%				\$107,125
Total Construction				\$1,227,925
Professional Engineering Services				
Wells				\$150,000
Engineering Design				\$75,000
Project Grand Total				\$1,799,075
Project Grand Total (Rounded)				\$1,800,000

SUMMARY OF PROBLEMS AND CAUSES

- Pumping water level decline reduced hydrodynamic efficiency in well, or regional water level declines or well interference
- Lower specific capacity drop in puping water level (increased drawdown) or pumping yield reduction
- Lower or insufficient yield dewatering, caving in of major fracture or water bearing zone, insufficient development, pump wear, perforation of column pipe, or increased total dynamic head in delivery system
- Lower efficiency usually a pump problem (wear, corrosion, inadequate power supply)
- Complete loss of production dewatering, plugging, subsidence, collapse, pump failure
- Sand or silt pumping open borehole, leakage in casing, problems with filter pack, enlarged screen openings