Formation, Degradation, and Treatment:

Addressing water quality challenges in Salem's Aquifer Storage and Recovery Wells

Ali Leeds DeEtta Fosbury

WATER OUR FOCUS OUR BUSINESS OUR PASSION

GSI Water Solutions, Inc.

ASR is an underground reservoir

ASR reallocates water by storing it when it is abundant for use later when it is needed most.

- Water is collected and stored underground in the winter when precipitation is plentiful and demands are lower (injection)
- Water is pumped out in the summer when demand is high and surface water sources are strained (recovery)

ASR is an underground reservoir

ASR reallocates water by storing it when it is abundant for use later when it is needed most.

- Water is collected and stored underground in the winter when precipitation is plentiful and demands are lower (injection)
- Water is pumped out in the summer when demand is high and surface water sources are strained (recovery)

RECOVERY (SUMMER)

Salem's ASR

Santiam River → Woodmansee Park

Salem's ASR

- Source: treated Santiam River water
- Aquifer: Columbia River Basalt
- 1st ASR limited license issued in Oregon (1997) Allows for:
 - Max storage volume: 1 billion gallons
 - Max recovery rate ~20 MGD from up to 15 wells
- Current system:
 - 4 wells, average recovery ~5 MGD
 - Max storage volume to date 695 MG (2018)
 - Peak summer demands
 - Turbidity events

ASR and Water Quality

Chlorinated surface water + basalt rock + native groundwater + time = Recovered water quality

pH: Recovered water pH is lower than source

Alkalinity: Recovered water alk is lower than source

Options for pH and alkalinity adjustment included soda ash and caustic soda.

Operations and Maintenance			
Soda	a Ash B	atching system + pumps	
Caustic	Soda To	ote + metering pumps	

Building size and cost were important factors in the selection.

	Soda Ash	Caustic Soda		
Building Impacts				
Footprint	Batching system has larger footprint or requires taller building	More compact		
Classification	Not hazardous	 > 500 gallons will make building H-4 (sprinklers and access considerations) 		
Chemical Delivery	Stored as power – needs to be stored in dry room	Requires contained storage		
Chemical Handling	2000 ton bags on pallets	275 or 330 gallon totes on pallets		
Cost				
Equipment	\$65,000 - \$150,000 for batching equipment \$250,000 for complete system	\$20,000 for pumps & VFDs \$10,000 for pump accessories \$15,000 for tote accessories		
Chemical	\$0.28 - \$0.55 /lb delivered			

DBPs: Recovered water sometimes had high levels of DBPs

Disinfection-by-products are formed by chlorinating organic matter.

DBPs: How a monitoring plan can shape operations

- First hits above MCL in 2005
 - City study \rightarrow presented at ACE 2008
 - Correlation with storage volume → avoid carryover storage
 - Conc. declines during recovery pumping → pump to waste
 - Noted differences between wells \rightarrow a mystery...
 - Started thinking about dechlorination
- Reasonable conclusions based on the data, but biased by the monitoring plan

DBP observations in 2018

Current understanding

- Hits above MCL are more frequent and persistent
 - THM formation does not continue over long-term storage → don't fear residence time
 - Conc. declines over time → pump to waste is unnecessary
 - Noted differences between wells → preferential storage at ASR 2 → unintentional "aquifer conditioning"
 - Getting ready to implement dechlorination

Facility Recommendations

Wanted: Single point of injection

- 3 connections to the distribution system
- Individual connections to the wells with distributed chlorination

Divide between "well" and "distribution"

- 3 connections to the distribution system
- Individual connections to the wells

Siting – Inside the park vs outside the park

Accommodating both low ave flow today and future higher flows

INTERIOR PERSPECTIVE NTS

INTERIOR PERSPECTIVE WITH FUTURE TANKS

~40'x45' footprint

Ali Leeds aleeds@carollo.com

DeEtta Fosbury dfosbury@gsiws.com

Questions?