## Addressing Unforeseen Challenges with Spent Media Disposal

Beth Mende, PE Pierre Kwan, PE

**H**R





- 01 Project Background
- **02** GAC System and Operation
- **03** GAC System Challenges
- 04 GAC Disposal
- 05 GAC Sampling and Analysis
- **06** Current Project Status



# **01 Project Background**

## **Project Location**

- Issaquah, Washington
- Primary supply is four groundwater wells
- Augmented with purchased regional surface water



### Well No. 4 Site

- Located adjacent to I-90 (adjacent to Issaquah Creek)
- Constrained site (accessed through Medical/Dental Center Parking Lot)



#### **Project Timeline**





# **02 GAC Systems and Operations**

## **GAC Design Basis**

| Parameter            | Value                                                                                     |
|----------------------|-------------------------------------------------------------------------------------------|
| Configuration        | 2 vessels (lead/lag) for Well No. 4<br>Expandable to add 2 more vessels for Well<br>No. 5 |
| Carbon               | Originally coconut shell, now bituminous coal                                             |
| Carbon per contactor | 20,000 lbs                                                                                |
| Iow Rate             | 250 gpm (Well No. 4)<br>Expandable to 1,400 gpm (Well No. 4 and 5)                        |
| Contact Time         | 21.4 minutes                                                                              |
|                      |                                                                                           |



### **GAC Media Summary**

|                                                  | Coconut             | Calgon Carbon F300  |  |  |
|--------------------------------------------------|---------------------|---------------------|--|--|
|                                                  | May 2016 – May 2017 | May 2017 to Present |  |  |
| Time in Service                                  | 11 months           | 54 months           |  |  |
| Water processed                                  | 102 million gallons | 463 million gallons |  |  |
| Bed Volumes w/o<br>breakthrough (Lead<br>Vessel) | 19,092              | 57,511              |  |  |
| Bed Volumes w/o<br>breakthrough (Lag<br>Vessel)  | _                   | 29,088              |  |  |

#### Well No. 4 Raw Water PFAS Concentration (ng/L)





# **03 GAC Systems Challenges**

#### **Radioactive Media**

- Spent GAC was temporarily stopped during transit for detectable radioactivity
- Non-detectable radionuclides and radiation in the groundwater
- Non-detectable ≠ zero
- Very low concentrations x lots of water
  = significant mass
- Concern now that current load of GAC has treated 3+ times more water

| Analyte     | Result (pCi/kg) |
|-------------|-----------------|
| Gross alpha | 0.00104         |
| Gross beta  | 0.00765         |
| Gamma       |                 |
| Pb-212      | 130             |
| Pb-214      | 2,300           |
| Bi-214      | 2,200           |
| Ra-226      | 2,200           |
| K-40        | 860             |
| Total       | 7,690           |

## **High Headloss**

- Well discharges at 110 psi
- Additional headloss adds 20+ psi
- Original system had 125 psi rupture disks for over-pressure protection





## **Bacteria Biofouling**

- Biogrowth on GAC was discovered after six months
- Causing high headloss development
- Growth identified as iron-related bacteria
- GAC could take 1 mg/L chlorine
- Would have required extensive re-piping
- Backwashing once a month instead
  - No detected impact on PFAS removal after 5.5 years

### Current Water Quality (ng/L) – March 2022

| PFAS  | WA<br>State Action<br>Level<br>(October<br>2021) | Gilman Well<br>4 Raw<br>Water | Gilman Well<br>5 Raw Water<br>(Offline) | Lag Vessel<br>(25%) | Gilman<br>Finished Water<br>(Well No. 4) |
|-------|--------------------------------------------------|-------------------------------|-----------------------------------------|---------------------|------------------------------------------|
| PFOS  | 15                                               | 282                           | 41                                      | ND                  | ND                                       |
| PFOA  | 10                                               | 9                             | ND                                      | ND                  | ND                                       |
| PFNA  | 9                                                | 10                            | ND                                      | ND                  | ND                                       |
| PFHxS | 65                                               | 104                           | 21                                      | ND                  | ND                                       |
| PFHpA | none                                             | 15                            | ND                                      | ND                  | ND                                       |
| PFBS  | 345                                              | 29                            | ND                                      | 2                   | ND                                       |



# **04 GAC Disposal**



## **GAC Disposal Options**

- Landfill
  - Permitting and characterization typically required
  - USDOT licensing
- Incineration
  - Approval process required
  - USDOT licensing
- Reactivation
  - Acceptance criteria for media acceptance by vendor
  - USDOT licensing

![](_page_17_Picture_0.jpeg)

#### Landfill

- May be simplest solution
- Huge issues with PFAS residuals
- Risk of PFAS and other contaminants
  back into the environment
- Leachate can contaminate groundwater sources
- Gets returned to environment without treatment

## Incineration

- Viable disposal option
- Requires stringent requirements
  to ensure PFAS is destroyed
- Risks could be PFAS being volatized and sent into the air
- Current guidance is 900 1,000 DegC
- Fewer facilities that can reach recommended temperatures

![](_page_18_Picture_6.jpeg)

### Reactivation

- Carbon reactivation units use high temperatures to thermally desorb contaminants from GAC
- Allows reuse of GAC
- Not all reactivation facilities operate under RCRA permits and air permits
- Uncertainty about facilities capabilities
- Potable vs. non-potable requirements

![](_page_19_Picture_6.jpeg)

![](_page_20_Picture_0.jpeg)

# **05 GAC Sampling and Analysis**

## **Estimated Media Life**

What is the limiting factor for change out and disposal?

- PFAS breakthrough on lag vessel?
- Specific parameter not meeting acceptance criteria for reactivation?
- Radionuclide accumulation?

![](_page_21_Picture_5.jpeg)

## **GAC Sampling**

- Sampling event took place in March 2022
- Media shipped to Calgon Carbon's lab
- Does GAC meet reactivation acceptance criteria?
- Results will determine options on how to dispose of spent media

![](_page_22_Picture_5.jpeg)

### **GAC PFAS Sampling Analysis – Limiting Factor?**

| PFAS         | SAL   | Months Until SAL is<br>Reached | Bed Volumes Until SAL<br>is Reached |
|--------------|-------|--------------------------------|-------------------------------------|
| PFOA (µg/L)  | 0.010 | 109.9                          | 166,577                             |
| PFOS (µg/L)  | 0.015 | 15.5                           | 23,442                              |
| PFHxS (µg/L) | 0.065 | 91.2                           | 138,189                             |
| PFNA (µg/L)  | 0.009 | 134.3                          | 203,564                             |
| PFBS (µg/L)  | 0.345 | 830.8                          | 12,58,987                           |

## **GAC Sampling Results and Analysis – Limiting Factor?**

|                   | Criteria & Testing                  |                |             | Analysis                                           |                                          |                             |                                    |
|-------------------|-------------------------------------|----------------|-------------|----------------------------------------------------|------------------------------------------|-----------------------------|------------------------------------|
| Constituent       | Facility<br>Acceptance<br>Guideline | GAC<br>Results | Test Method | Accumulation<br>Trend with<br>25% FOS<br>(unit/mo) | Months<br>Until<br>Guideline<br>Exceeded | Media<br>Expiration<br>Date | Bed Volumes<br>Until<br>Exceedance |
|                   |                                     | 00             |             |                                                    |                                          |                             |                                    |
| Arsenic (mg/Kg)   | 50                                  | 89             | EPA 6010C   | 1.937                                              | -20.1                                    | 5/23/2020                   | (30,407)                           |
| Barium (ma/Ka)    | 350                                 | 90             |             | 1 050                                              | 132 7                                    | 12/13/2032                  | 200 459                            |
| Danum (mg/Kg)     | 330                                 | 90             | EFA 0010C   | 1.909                                              | 132.1                                    | 12/13/2032                  | 200,439                            |
| lron (mg/Kg)      | 10,000                              | 14,000         | EPA 6010C   | 304.701                                            | -13.1                                    | 12/20/2020                  | (19,826)                           |
|                   |                                     |                |             |                                                    |                                          |                             |                                    |
| Manganese (mg/Kg) | 5,000                               | 4,800          | EPA 6010C   | 104.469                                            | 1.9                                      | 3/16/2022                   | 2,891                              |

#### **Radionuclide Analysis – Limiting Factor?**

- USDOT has developed exemption activity concentrations for uranium and its decay products
- Exemption limit for uranium-238 and all of its decay products is 270,000 pCi/kg.
- GAC vessels estimated to treat up to 900,000 bed volumes
- Much longer than the expected lifetime of the carbon vessels before the exemption limit is reached

![](_page_25_Picture_5.jpeg)

![](_page_26_Picture_0.jpeg)

# **06 Current Project Status**

## **Current Status**

- Based on analysis, replacement would occur in Fall 2022
- 5.5 years of media life
- Original estimate was change out every 6 to 9 months

![](_page_27_Picture_4.jpeg)

## Acknowledgments

#### **City of Issaquah**

- Greg Keith, Water System Superintendent
- Dan Loch, Operator
- Alan Munson, Operator
- Tony Nguyen, Public Works Engineering Manager
- **Calgon Carbon**
- Ben Goecke

![](_page_28_Picture_8.jpeg)

Beth Mende, PE | (425) 468-1532 | <u>Elizabeth.Mende@hdrinc.com</u> Pierre Kwan, PE | (206) 826-4735 | <u>Pierre.Kwan@hdrinc.com</u>

![](_page_29_Picture_1.jpeg)