

Bull Run TREATMENT PROJECTS **Our water: Safe and abundant for generations to come**

PORTLAND WATER BUREAU

Bull Run Treatment Projects

Evaluation of Pre-Oxidation and Secondary Disinfection Approaches on DBP Formation and Taste & Odor Using Simulated Distribution System Testing

April 28, 2022 Anna Vosa, PE

Agenda

- Background Portland's Bull Run Filtration Facility Project
- 2. Methods for Assessing Treatment Alternatives for DBPs and T&O
- 3. Test Results
 - Pre-oxidant comparison
 - Secondary residual (chlorine vs chloramines)
- 4. Summary

Thanks to thoughtful planning, Bull Run has been a source of **excellent water since 1895**

- Serves almost
 1 million people
- Serves the City of Portland and 19 wholesale customers
- Uses 100 million gallons of water on an average day

Improvements to our system are needed to meet national drinking water standards

free chlorine contact ~3-4 hours contact time targeting 2.2-2.5 mg/L

Corrosion control treatment reduces lead exposure

Since 1997

Improved Corrosion Control by 2022

Ammonia addition for chloramination

Soda ash & CO2 for pH & alkalinity control

Existing Water Quality and BRFF Treatment Goals

	Current Unfiltered Finished Water Quality Average and (Range)	BRFF Project Goal	Notes
Turbidity (NTU)	0.4 (0.2 – 3.3)	<0.1 NTU	AWOP & PSW optimization goal
TOC (mg/L)	1.0 (0.7 – 2.0)	-	Organics reduction needed to reduce DBPs
Total Chlorine Residual (mg/L)	2.2 – 2.5 mg/L at entry point >1.0 mg/L in tanks >0.5 mg/L in DS	no change	
Total Trihalomethanes (TTHM) (ug/L)	27 (16 – 48)	LRAA <40 ug/L	<50% of MCL (MCL = 80 ug/L)
Haloacetic Acids (HAA5) (ug/L)	32 (11 – 55)	LRAA <30 ug/L	<50% of MCL (MCL = 60 ug/L)

AWOP = Area Wide Optimization Program

PSW = Partnership for Safe Water

MCL = Maximum Contaminant Level

LRAA = Locational Running Annual Average

DS = distribution system

Proposed Treatment Process

Purple = Treatment decisions with potential to impact DBPs, chlorine stability, and taste/odor of water in the distribution system

Bench testing approaches for evaluating DBP formation

	Formation Potential "FP"	Uniform Formation Conditions "UFC"	Simulated Distribution System "SDS"
Incubation Time	7 days	24 hours	Match max water age
Chlorine Residual Target	3-5 mg/L after 7 days	1.0±0.4 mg/L after 24 hours	Match DS residual target
Incubation Temperature	25.0±2.0°C	20.0±1.0°C	System-specific
рН	7.0±0.2	8.0±0.2	System-specific (i.e., corrosion control target)
Secondary disinfectant	n/a (free chlorine)	n/a (free chlorine)	System-specific (chlorine or chloramines)

Standard Method Most comparable across multiple sites System-specific Least comparable across multiple sites

Why Simulated Distribution System (SDS) Testing?

- Benefits of SDS Tests:
 - Most representative of expected water quality
 - Opportunity to incorporate more than THMs and HAAs:
 - Chlorine stability in bulk water over time
 - Taste testing (flavor profile analysis and flavor rating assessment)
 - Unregulated DBPs (e.g., NDMA formed during chloramination)
- Limitations of SDS testing:
 - Only considers bulk water reactions
 - × Nitrification
 - **×** Pipe wall effects from unlined cast iron
 - Results cannot be extended to or compared with other supplies

SDS Conditions for BRFF Pilot Study

	Secondary Residual: Chloramines	Secondary Residual: Free Chlorine			
Free Chlorine Contact Period:	60 minutes				
Chlorine Residual Target after Free Chlorine Contact Period:	2.5 mg/L	2.0 mg/L			
pH/Alkalinity* Target:	9.0/30	8.5/30			
Treatment Chemicals	Chlorine:HASA sodium hypochlorite, 12% (NaOCI)Corrosion Control:Soda Ash (Na_2CO_3) and Sodium Bicarbonate $(NaHCO_3)$ Chloramination:Ammonium hydroxide (NH_4OH)				
Simulated Distribution Incubation Period	14 days (WQ sampling at beginning, middle, and end)				
Incubation Temperature	Match seasonal terminal reservoir temp (11 – 20°C)				

Bull Run Pilot Plant Filter Columns

*Alkalinity as CaCO₃

SDS Testing Approach

Flavor Profile Analysis (FPA) and Flavor Rating Assessment (FRA)

T&O Wheel of Descriptors

FPA rates the intensity of specific characteristics – taste/aftertaste, odor, mouthfeel – identified by the taster on a scale of 0-12 (SM 2170)

> FPA Scale (odor-free) (threshold)

- (very weak)
- (weak)
- (moderate)
- 10 12

6

8

(strong)

U

FRA rates the acceptability of the water on a scale of 1-9 (SM 2160)

FRA scale

- 1. I would be very happy to accept this water as my everyday drinking water.
- 2. I would be happy to accept this water as my everyday drinking water.
- I am sure that I could accept this water as my everyday drinking water.
- 4. I could accept this water as my everyday drinking water.
- 5. Maybe I could accept this water as my everyday drinking water.
- I don't think I could accept this water as my everyday drinking water.
- 7. I could not accept this water as my everyday drinking water.
- 8. I could never drink this water.
- I can't stand this water in my mouth and I could never drink it.

Flavor Profile Analysis and Flavor Rating Assessment

FPA/FRA Scoring Sheet for Drinking Water Samples

Initials _	AV						Date	5/18/21
Sample	Odor		Mouthfeel		Taste and After	rtaste	FRA	
ID	Descriptor	FPA (0-12)	Descriptor	FPA (0-12)	Descriptor	FPA (0-12)	(1-9)	Comments
1	nint	6	Smoothe	G	chlurine chlurine	33	5	
2	Non	6	Smuth	6	Metallic afterta	ete 1		no taste
3	nure	0	5 much	0	early cathe	1 Hart 1	3	
4	n une	6	small	0	deloria	l	2	

Samples include the following full treated drinking water samples (not necessarily provided in this order):

- Pilot-filtered water, coagulated with alum, pre-oxidation via pre-chlorination. Adjusted to pH 9 and containing 2.0-2.5 mg/L total chlorine residual.
- Pilot-filtered water, coagulated with alum, pre-oxidation via pre-ozonation. Adjusted to pH 9 and containing 2.0-2.5 mg/L total chlorine residual.
- PWB unfiltered tap water collected from C3LO (Lusted Outlet entry point)
- PWB unfiltered tap water collected from WQSS 71 outside Interstate

Tips for taste testing and considerations for using "simulated" water

- All samples must be treated to drinking water standards
- Treatment chemicals NSF 60 or high-quality reagent-grade
- Glassware cleaned and "chlorine-demand free"
- Consider screening taste testers beforehand
- Avoid eating/drinking 30 minutes beforehand
- Samples numbered but randomized
- Clean plastic or glass cups, no paper cups
- T&O free water and salt-free crackers in between samples

Portland WQ staff Lillian and Nick bravely tasting water samples

Results

SDS Test*	Objective	Raw (unfiltered) WQ	Filtered WQ	Incubation Temp (°C)
Test 1 (fall 2019)	Pre-ozone vs no pre-oxidantAnthracite vs GAC	0.3 NTU 1.3 mg/L TOC	<0.05 NTU 0.4 – 0.6 mg/L TOC	9-13
Test 2 (spring 2021)	Pre-ozone vs pre-chlorine	0.4 NTU 0.8 mg/L TOC	0.01 NTU 0.3 mg/L TOC	20
Test 3 (fall 2020)	 Two pre-ozone doses (0.6 vs 1.2 mg/L) Secondary residual impact (chloramines vs free chlorine) 	0.5 NTU 1.7 mg/L TOC	0.01 NTU 0.6 - 0.7 mg/L TOC	20

*Coagulation with PACI for Tests 1 and 3. Coagulation with alum for Test 2.

Filtered

Unfiltered

Average Flavor Rating

Summary

- Tasters generally rated water highly
 - no major improvements or drawbacks to taste/odor associated with treatment
- Filtration greatly improved total chlorine stability
- DBP goals met with any preoxidant approach
 - Project includes 0.75 mg/L ozone system, but may be deferred
 - Pre-chlorination, depending on dose, may not be able to meet DBP reduction goals following a wildfire or other event that degrades raw water quality

Estimated DBP Reduction for Treatment Elements

Acknowledgements - Pilot Study Project Team

PORTLAND WATER BUREAU TROM FOREST TO FAULT

Г

Burea

Water

Portland

- Yone Akagi Water Quality Group Manager
- Kimberly Gupta Bull Run Supply & Treatment Manager
- Anna Vosa SDS Testing Lead
- Mac Gifford Pilot Operations Lead
- Pilot Ops: Thomas Krause, Mojtaba Azadi Aghdam, Humberto Piedra-Ruiz, Lillian Gehres, Melanie Roy
- PWB Lab Christina Cotnam, Marsha Farooqui, Otilia Plesiu

Our water: Safe and abundant for generations to come

Learn More portland.gov/bullrunprojects

Thank you!

Anna Vosa, PE anna.vosa@portlandoregon.gov