Streamlined Pipeline Seismic Design Geotechnical and Pipeline Modeling for an Essential Pipeline Project

4/29/2022

- Project Overview
- Seismic Analysis Approach
- Site Conditions
- Seismic Hazards and Ground Deformation Analysis
- Steel Pipe Seismic Performance Criteria
- Soil-Pipe Interaction analysis/modeling
- Pipeline Seismic Design Approach

Seismic Hazards on Pipeline

Seismic Wave Propagation Transient deformations

Permanent deformations from Fault Offset/Liquefaction/Lateral Spreading/Slope Failure

Essential pipelines required for post-earthquake response and recovery and intended to remain functional and operational during

and following a design earthquake.

Table 3-1. Pipe Function Classes

IV

Essential

Seismic Design Criteria

- WWSP Seismic Design Criteria
- Pipe Function Class: Class IV
- Design Earthquake Event: 1/2475 years return period
- Level of Service: functionality requirements during and after design earthquake, and for post earthquake response and recovery.

Seismic Design Approach

- Approach 1: Remain in service without need for repair (normal stress based design – no damage)
- Approach 2: Limit pipeline load demands to a tolerable level (strain based)
 - Strain limits that allow some controlled level of pipe yield
 - May require repair to linings
 - Permit the pipe to deform plastically to a high state of deformation without rupture
 - May require repair to pipe

What is the cost difference between "accepting some damage" and "no damage"? Is "no damage" even feasible?

Stress

FUNCTIONAL

NOT ACCEPTABLE

Seismic Design Considerations

- The benefit of strain based design is the ability to target specific points of failure, rather than overdesigning with unnecessary pipe thickness and/or ground improvements.
- When is strain-based design most appropriate?
 - Essential pipeline required for post-earthquake response and recovery
 - Pipeline with complex alignment, subject to ovality and mainly axial forces effects
 - Preventing a fracture accident

General Seismic Pipeline Design Process

- Identify hazards that apply to the pipeline
- Evaluate the magnitudes of the hazards and loading parameters
- Perform finite element analysis (Soil-Pipe Interaction Modeling)
- Using iterative process to confirm acceptable strain and/or other design criteria are achieved.

Project Overview

PLW_2.0 Pipeline:

- 3.3 miles welded 48-inch steel pipe
- Cornelius Pass Road from SE Frances to HWY 26
- Two Creek Crossings
 - Beaverton Creek
 - Rock Creek
- Five Trenchless Crossings
- Three Turnouts

Site Conditions

Beaverton Creek

Subsurface Conditions

Seismic Hazards & Ground Deformation Analyses

- Seismic hazards mainly from local crustal EQs and Cascadia Subduction Zone EQs;
 - Design Earthquake Event: 2,475 years event;
 - Liquefaction of Fine-Grained Flood Deposits and Recent Alluvium
 - Lateral spreading and seismic slope failure generated lateral movement
- Conducted seismic liquefaction and ground deformation modeling using FLAC with 5 ground motions;
- Soil constitutive models of PM4SAND
- Soil liquefaction potential (excess pore water pressure ratio Ru) is high for shallow silt and sand deposits, and low for deeper sand and clay deposits

Ground Motions

Input Ground Motion 1

Cascadia Subduction Zone Scaled to D/C Boundary

Source: 2011 Tohoku (Great Japan Earthquake) Taiwa (MYG09) Magnitude 9.0

Beaverton Creek Seismic Ground Deformation Modeling

Beaverton Creek Seismic Ground Deformation Modeling

Rock Creek Seismic Ground Deformation Modeling

MCMILLEN JACOBS ASSOCIATES

Rock Creek Seismic Ground Deformation Modeling

Rock Creek Seismic Ground Deformation Modeling

Steel Pipe Material Properties

Steel Pipe Material Properties:

- Elastic Modulus: 29000 KSI
- Design Yield Strength: 50 KSI

Strain-Based Design for Steel Pipe

Accepted strain criteria:

- Tension: 2%
- Compression: see graph

Willamette Water Supply Program Guideline

Representative Soil Springs

- Guidelines for Constructing Natural Gas and Liquid Hydrocarbon Pipelines Through Areas Prone to Landslide and Subsidence Hazard, PRCI, Jan. 2009.
- Adjusted for soil liquefaction/cyclic softening using Ru.
 - Pore Pressure Ratio (Ru) = Pore Pressure Increase / Initial Effective Stress
 - FLAC modeling evaluated Ru to assess soil liquefaction/cyclic softening potentials
 - Using Ru to calculated effective stresses in soils during shaking
 - Using the adjust effective stress in soil restraint calculation

(c) Soil spring load-deformation relationships

Soil Springs – Rock Creek

ABAQUS Pipe Soil Interaction Model

Developed Abaqus Finite Element Analysis (FEA) models

- Pipe is modeled with beam-type elements (elbow elements, using a full shell formulation around the circumference)
- Soil-pipe interaction are modeled with PSI elements
- Stiffness of PSI element are represented by Soil springs
- Ground deformations (in multiple directions) are applied at the far-field edge of the PSI element

ABAQUS Pipe Soil Interaction Model

- Can capture internal pressure
- Can accurately capture nonlinear response of ovality which increase elastic flexibility of the pipe
- Can assess strain/stress at multiple points along the pipe circumference and through thickness

Abaqus Models – Beaverton Creek

- Modeling was performed in an <u>iterative process</u>.
- Started with an initial pipe thickness (i.e. 0.375").
- Areas of the pipeline with tensile and compressive strain exceeding the program limits were identified.
- The pipe wall thickness was increased in these areas and the model was rerun.
- This process was repeated until the limits for tensile and compressive strain were met.

Stationir	Thickness (inches)	
1319+00	1321+00	0.500
1321+00	1325+68.21	0.875
1325+68.21	1327+45	0.750
1327+45	1329+40	0.563

Abaqus Modeling – Rock Creek

Plan View of Rock Creek Alignment with Soil Node Displacement Superimposed

Abaqus Modeling - Rock Creek

Abaqus Modeling - Rock Creek First Iteration

Abaqus Modeling - Rock Creek First Iteration

Section of Pipe Wall Over Allowable <u>Accessible</u> Tensile Strain Limits

Offset as % of Pipe Thickness $ ightarrow$	40%	2001 ALA Guidance PRCI 2014 Normal Operability	PRCI Seismic Guidelines for a Pipe Butt Weld (Dorey et. al., 2001)	2005 ALA for Water Pipelines (1.76t/D)
Thickness (in)	Offset (in)	Tensile Strain	Compressive Strain	Pressure Integrity Compressive Strain
0.375	0.150	2%	0.111%	1.35%
0.500	0.200	2%	0.188%	1.80%
0.625	0.250	2%	0.285%	2.23%
0.750	0.300	2%	0.400%	2.67%

Abaqus Modeling - Rock Creek Second Iteration

Abaqus Modeling - Rock Creek Second Iteration

- Improved seismic performance
- Still some localized areas with excessive strains (especially after mitered bends), but generally ok.

Excessive Strain Concentrated in 1/2" Pipe Body

Abaqus Modeling - Rock Creek Third Iteration

Recommended revision in alignment

Summary

- Extensive seismic hazards and ground deformation analyses are conducted
- Dynamic soil modeling (FLAC) indicates potentially high seismic ground deformation hazards at some potions of the pipeline;
- Stress conditions during liquefaction/cyclic softening were considered using excess pore pressure ratio (Ru) and the soil restraints were adjusted accordingly;
- Finite element soil-pipe interaction model (Abaqus) were developed and analyzed;
- Soil-pipe interaction modeling results are used to guide the selection of appropriate pipe sections to resist the ground deformation loads
- In addition to increasing pipe thicknesses, smoothing the bends and minor alignment adjustment will improve pipe seismic performance.

Thank You

Yuxin "Wolfe" Lang, PE, GE*, P.Eng** Principal Engineer

McMillen Jacobs Associates 2000 SW First Avenue, Suite 410 | Portland, OR 97201 503.384.2919 p | 971.300.9538 c | lang@mcmjac.com

LinkedIn | Facebook

* Licensed in States of OR, WA ** Licensed in Provinces of BC, ON