What if Your Meters Could Hear the Leaks You Can't See?

kamstrup

Who am I

Simon Wick Solution Manager

iwk@kamstrup.com
+1 619 323 4496
www.kamstrup.com

Agenda

- Kamstrup Water Metering LLC
- Non-Revenue Water & Challenges
- Integrated Acoustic Capabilities & Benefits
- Case Story: Oneida Water Department
- Case Story: Others
- Questions & FAQ

30-35 minutes

Kamstrup Water Metering LLC

Technology and Innovation at our Core

At Kamstrup, we have more than 30 years of experience within ultrasonic metering

Patented technology and solutions portfolio focused on eliminating Non-Revenue Water

Global Expertise

Everything we sell around the world is developed and manufactured by Kamstrup in automated production facilities

8M+ ultrasonic meters shipped with a global failure rate of 0.5%

Non-Revenue Water & Challenges

Defining the correct terms for addressing NRW

Non-Revenue Water is many things..

IWA/AWWA Water Balance

Water Supplied	Authorized consumption	Billed authorized consumption	Billed metered consumption	
			Billed unmetered consumption	
		Unbilled Authorized consumption	Unbilled unmetered consumption	
			Unbilled metered consumption	Z
	Water loss	Apparent losses	Unauthorized consumption (Theft)	on-Revenue Water
			Metering inaccuracies	
		Real losses	Leaks on transmission and distribution mains	
			Leaks on overflow at utility storage tanks	
			Leaks on service connections up to metering points	

The Four-Pillar Approach to the Control of Real Losses

Different types of Leakage

Leak Run Time – why it matters

Distribution of Non-Revenue Water

Water System Leaks By Type

Water Systems Leaks by type

kamstrup

Challenges with Acoustic Leak Detection

Generation and propagation of leak noise governed by phenomena like:

- Pipe material
- Pipe dimension
- Water pressure
- Pipe surroundings
- Turbulent flow at the hole
- Cavitation
- Bubble formation/oscillation

Sensor efficiency is highly dependent on:

- Sensor type
- Distance to leak
- Access to pipes
- Coupling of sound into sensor
- Data analysis

Challenges with Acoustic Leak Detection

Leak noise

Ambient noise

Integrated Acoustic Capabilities & Benefits

Integrating Acoustic Leak Detection into a Smart Meter

How does it work?

- It is known that if you have a leak, it will likely generate noise.
- With an integrated acoustic sensor, the meter is equipped with a new sensor that allows for measurement of acoustic noises.

Integrated acoustic sensor with the ultrasonic measuring principle

With the integrated acoustic sensor, it is possible to measure noise in both direction of the pipe. The acoustic sensor does not influence the flow measurements at any time.

Different Technologies - Example of deployment

Ś

Service and Main Line Focus

Increased coverage and continuous monitoring from liftNshift / survey mentality

No additional system purchases, maintenance, costs as well as a 20-year solution

Water meter-based sensor

Introducing an acoustic sensor into a water meter you obtain:

- Sensors installed throughout the grid
- Sensors coupled directly (strongly) to the water pipe
- Low maintenance
- Use of existing radio network

Challenges it addresses:

- Cost of retrofitting leak sensors
- Lift-and-shift
- Finding leaks efficiently on PE pipes
- 20-year battery lifetime covered under one warranty with the smart meter

How to avoid false-positives:

- Measuring acoustic noise 26 times a day
- Only using 1 out of the 26 measurements to determine the lowest noise
- 26 measurements ensures that measurements are random times everyday.

Advantages of an Integrated Acoustic Solution

Monitoring Acoustic leak noise in the No additional monitoring Prioritize pipes to across the infrastructure maintenance indicate to install and in known entire potential problem distribution maintain. leaks 24/7 network. areas. 365 days of the year.

Reduced Complexity

Add-on Leak Sensor

Meter price + Radio price + Leak Sensor price

Meter installation + Radio installation + Leak Sensor installation

2 wires

3 hardware components to manage / troubleshoot

3 different warranties

2 different vendors, multiple distributors

Integrated Acoustic Sensor

Meter price

Meter installation

No wires

1 hardware component to manage / troubleshoot

1 warranty

1 vendor, 1 distributor

Case Story: Oneida Water Department

Town of Oneida

- 4,620 AMI / ALD Meters
- 15 Data Collectors
- **118** Square Miles
- 322 Miles of Mainline Pipe
- February June Deployment Schedule

Oneida Changed out Mechanical 4,620 AMR Meters

Water Loss at 51%

- Oneida Water Department under new management seeing the water **loss at 51%**, chose to go with the new AMI/ALD meter due to its overwhelming accuracy and reliability.
- In the first 3 months, Oneida went from 51% water loss to 28%.
 - Of that, **10.7%** was after the initial total changeout. Which indicates the existing water meters were not registering accurately.
 - At the initial Kamstrup meter startup Oneida had **77 meters** that had acoustic sound levels over **100 decibels** indicating possible leaks.

Water Loss Recovery

- Oneida initiated an aggressive water loss recovery program.
 - Placing **2 full time employees** with leak detection equipment.
 - Using ALD, **37 leaks** have been located and repaired by the Distribution repair crew.
- Currently we are at:
 - 28% water loss, but we are on track and anticipate by the end of this year to be 20%
 - And by July 2022 to be at **15% water loss** which will save approximately **\$140,000** in loss revenue and **gained 36** working days not having to read meters to spend more time finding water leaks.

Cost Savings

- Based on the 10.7% water loss reduction on the initial change out alone, Oneida saved approximately \$3,350 per month.
- The meter system is on track to save us approximately **\$40,200 per year** on the meter change out alone.
- During the initial changeout, the water treatment plant was operating on average around **15 hours** per day.
- Currently, the treatment plant has been able to cut down the hours of operation to an average of **11 hours per day.**

Utility Service Line

- High noise detected on several meters
- Service line leak had been running a minimum of 5 months

Leak Detector

Site visit with Oneida, TN

Leak estimated at 2 GPM and had been running for at least 5 months

Utility Service Line made from ductile iron

III & Kamstrup Suppor

4 4

Aug 2021

Track Info cou

+ A × □ □

□ 04/08/2020 → 05/08/2021

ACOUSTIC OVER TIME

ed to be a leak on .

ined to be a leak on

Weter on front side of buildi... + 🔗 🗙 🗌

May 2021

07/30/2021

07/30/2021

Distance to leak was approximately 30 feet to 150 ft

Customer Success

- High noise detected on single meter
- Service line leak had been running a minimum of 4.5 months
- The revenue lost estimated around \$21,000 in 12 months

Site visit with Oneida, TN

Leak estimated at 4 GPM and had been running for at least 4 months

Utility Service Line made of PVC

Distance to leak was approximately 50 ft

Leak Detector

Case Story: Others..

Customer Success

- Smaller suburban area in Madison County, AL
- Water leak never reached the surface (nearby creek absorbed it)
- Leak had been running for approximately 2 months
- Total water lost accounted to 432,000 gallons
- If the leak had been running for 12 months: 2,628,000 gallons

Site visit with Madison County, TN

Leak was estimated around 5 GPM and had been running for at least 2 months

Utility Service Line made from polyethylene

Distance to leak was approximately 6 feet

Customer Success

Leak on a 14" main

30 GPM rate of flow

Distance heard up to half a mile on both ends from galvanized pipe

Ephrata, PA

• Leak was pinpointed and confirmed by local crews and the use of a correlator / ground mic

Leak on 12" main

Ŭ

55ft. From copper service line

Thank You

Simon Wick Solution Manager

iwk@kamstrup.com
+1 619 323 4496
www.kamstrup.com

1) How far out on the pipe can the meter detect noise?

2) Does noise always propagate to neighboring meters/houses?

3) Does the pipe material have any influence on the acoustic measurement?

4) Can it detect leaks/bursts on the mains?

5) What are the most common noise sources?