

City of Vancouver Bench- and Pilot-Scale Evaluations for PFAS Mitigation

PNWS-AWWA 2024 Section Conference Spokane, WA May 1-3, 2024

Gwen Woods-Chabane (HDR)
Pierre Kwan (HDR)
Tyler Clary (City of Vancouver)
Cole Benak (City of Vancouver)

Vancouver Water System

- 3rd largest utility in state, serves about 277,000 people, 78,000 metered connections
- Supplied by three regional groundwater aquifers
- Includes 9 Wellfields (water stations), 40 wells, 50 booster pumps, and 1,100 miles of pipes
- ADD of 27 MGD
- 25% of service area outside City limits

Responding to PFAS

Project Overview

Establish
Project
Objectives

Bench-Scale Testing

Pilot-Scale Testing

Final Technology Review

- Review existing data
- Establish WQ goals
- Technology selection for further testing

- Rapid Small-Scale Column Testing (RSSCT)
- Tested two source waters
- Tested seven different media

- Four pilot columns
- Four media tested
- Tested WS4 source water
- One full year of piloting

Review
 relative
 performance
 of GAC and IX
 media tested

Review of State (SALs) and Federal (MCLs) Levels

PFAS Compound	USEPA HAL: 2016 to 2022 (ng/L)	State of WA SALs: As of 2021 (ng/L)	USEPA HALs: As of 2022 (ng/L)	USEPA Proposed MCLG: As of 2023 (ng/L)	USEPA Proposed MCLs: As of 2023 (ng/L)
Perfluorooctanoic acid (PFOA)	Combined HAL =	10	0.004	Zero	4.0
Perfluorooctanesulfonic acid (PFOS)	70	15	0.02	Zero	4.0
Perfluoro-n-nonanoic acid (PFNA)	N/A	9	N/A		1.0 (unitless) Hazard Index
Perfluorohexanesulfonic acid (PFHxS)	N/A	65	N/A	1.0 (unitless)	
Perfluorobutanesulfonic acid (PFBS)	N/A	345	2,000	Hazard Index	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	N/A	N/A	10		

PFAS Compounds Found in City Wells in 2020 and 2021

PFAS Compound	CAS#	Carboxylic or Sulfonic Acid?	Carbon Chain Length	Avg. Conc. in Wells (ng/L)	Max. Conc. in Wells (ng/L)
Perfluorobutanesulfonic acid (PFBS)	375-73-5	Sulfonic	4	3.6	6.9
Perfluorohexanoic acid (PFHxA)	307-24-4	Carboxylic	6	2.3	7.8
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	Sulfonic	6	3.6	7.1
Perfluoroheptanoic acid (PFHpA)	375-85-9	Carboxylic	7	0.76	3.1
Perfluorooctanoic acid (PFOA)	1763-23-1	Carboxylic	8	4.7	14
Perfluorooctanesulfonic acid (PFOS)	335-67-1	Sulfonic	8	10	25
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	Carboxylic	9	0.36	0.93

Bench-Scale RSSCT Trials

Media No.	Name	Vendor	Media Type
1	Filtrasorb 400	Calgon	Bituminous GAC
2	UltraCarb 1240LD10	Evoqua	Sub-bituminous GAC
3	CalRes 2304	Calgon	Strong Base Anion
4	AmberLite PSR2 Plus	Evoqua	Strong Base Anion
5	APR-2	Evoqua	Strong Base Anion
6	Purofine PFA694E	Purolite	Strong Base Anion
7	Fluoro-Sorb 200	Evoqua	Proprietary Adsorbent

Bench-Scale RSSCT

- Two source waters tested: raw water from WS4 and WS15
- Testing conducted at WS4
- PFAS compounds spiked to ~3 times
 System Maximum
 - Help ensure that breakthrough occurs in timeframe of short, bench-scale studies (particularly for IX resins)
 - Intent is to look at the relative performance of media
 - Pilot-scale testing later with ambient PFAS concentrations

Bench-Scale RSSCT (GAC)

Bench-Scale RSSCT (GAC)

F400 - WS15

Bench-Scale RSSCT (Fluoro-Sorb)

Bench-Scale RSSCT Conclusions

- GAC: F400 > UC1240LD
- IX: APR2 > PFA4694E > CR2304 > PSR2+
- Fluoro-Sorb 200: poor performance with low molecular weight PFAS; PFOA also poorly retained
- Media Selection for Pilot Testing:
 - Calgon F400
 - Evoqua APR2
 - Purolite PFA4694E
 - Calgon CR2304

Pilot-Scale Design

- Source water: WS4 (post-aeration for logistical reasons)
- Pretreatment: 0.5-µm filtered (needed for IX columns)
- Column diameter: 4"
- EBCT: 5.4 min (GAC), 1.5 min (IX)
- Depth: 70" (GAC), 30" (IX)
- HLR: 8.0 GPM/ft² (GAC), 12.6 GPM/ft² (IX)

Pilot-Scale Sampling

Parameter	Analytical Method	Frequency				
On-Site Measurements						
Pressure	Pressure Transmitters	Daily				
Inst. Flow Rate	Flow Meters	Daily				
Total Flow Rate	Flow Meters	Daily				
рН	SM4500H+B	Weekly				
Temperature	USEPA 170.1	Weekly				
Alkalinity	SM2330B	Weekly				
Conductivity	SM2510B	Weekly				
Turbidity	USEPA 180.1	Weekly				
BSK Measurements						
PFAS	USEPA 537.1	Weekly				
TOC	SM5310B	Weekly				
DOC	SM5310B	Weekly				

Pilot-Scale Sampling

Parameter	Analytical Method	Frequency				
BSK Measurements						
Hardness	SM2340B	Quarterly				
Arsenic	USEPA 1632	Quarterly				
Chloride	USEPA 300.0	Quarterly				
Sulfate	USEPA 300.0	Quarterly				
Fluoride	USEPA 300.0	Quarterly				
Nitrate	USEPA 353.2	Quarterly				
Calcium	USEPA 200.7	Quarterly				
Magnesium	USEPA 200.7	Quarterly				
Potassium	USEPA 200.7	Quarterly				
Sodium	USEPA 200.7	Quarterly				
TDS	SM2540C	Quarterly				
Total Iron	USEPA 200.7	Quarterly				
Dissolved Iron	USEPA 200.7	Quarterly				
Total Manganese	USEPA 200.7	Quarterly				
Dissolved Manganese	USEPA 200.7	Quarterly				

Pilot-Scale Results

Average Pilot Influent PFAS Speciation

Pilot-Scale Results

Pilot Influent PFAS Speciation Over Year of Testing

Pilot-Scale Results (PFHpA)

Pilot-Scale Results (PFHxA)

Pilot-Scale Results (PFHxA)

Pilot-Scale Results (PFBS)

Pilot-Scale Results (PFHxS)

Pilot-Scale Results (PFOS)

Pilot-Scale Results (PFOA)

Pilot-Scale Results (Hazard Index)

$$HI = \frac{HFPO - DA}{10} + \frac{PFBS}{2000} + \frac{PFNA}{10} + \frac{PFHxS}{9}$$

HFPO-DA: not detected in wells

• PFBS: averaged 4.7 ng/L in

influent over study

PFNA: has only been detected

below Reporting Limits

• PFHxS: averaged 6.8 ng/L in

influent over study

Source Water	Calculated HI
Average Influent	0.75
Final Effluent (IX columns)	0.00
Final Effluent (GAC)	0.0016

CONCLUSION:

PFOA and PFOS will dictate media replacement. HI not predicted to be a problem under WQ conditions

Pilot-Scale Results: 20-Year Lifecycle Cost Estimates*

					Column 4
	Column 1	Column 2	Column 3	Column 4	(F400) –
	(APR-2)	(PFA694E)	(CR2304)	(F400)	Reactivated**
Billion gallons to changeout	3.1	1.4	2.5	1.3	1.3
Years to first changeout	7.3	3.3	6.6	4.4	4.4
Media pricing per cubic foot	\$ 511	\$ 401	\$ 524	\$ 70	\$ 58
No. vessels (entire system)	14	14	16	20	20
Vessel pricing (entire system)	\$ 3,400,000	\$ 3,450,000	\$ 3,200,000	\$ 4,600,000	\$ 4,600,000
Media pricing (entire system)	\$ 3,030,000	\$ 2,380,000	\$ 3,550,000	\$ 1,860,000	\$ 1,540,000
TOTAL (20-years)	\$ 10,400,000	\$ 14,900,000	\$ 12,100,000	\$ 11,400,000	\$ 10,300,000
TOTAL (yearly)	\$ 521,000	\$ 745,000	\$ 607,000	\$ 571,000	\$ 513,000
TOTAL (monthly)	\$ 43,000	\$ 62,000	\$ 51,000	\$ 48,000	\$ 43,000
TOTAL (monthly, per customer)	\$ 0.16	\$ 0.23	\$ 0.19	\$ 0.18	\$ 0.16

^{*}Estimates based on PFOA breakthrough data and include pricing for Media and Vessels

^{**}Estimates from Virgin GAC performance in pilot column

Bench-Scale and Pilot-Scale Testing SUMMARY

• **IX Resins**: APR2 can CR2304 were the best performing media in the

pilot study (per volume of water treated)

• GAC Media: Bench-scale testing illustrated that the F400 performed

significantly better than UC1240LD

Cost Analysis: Under current market pricing, APR2 was more cost-effective

than the other IX resins, but comparable to the F400 GAC

• Pilot Operation: Over year of operation, columns did not experience

noticeable headloss or significant fouling. Backwashing

wasn't necessary with GAC

OVERALL: Water quality at WS4 would be amenable to either IX or

GAC, both for effectiveness of PFAS removal and

operational considerations

PFAS Mitigation Implementation Schedule

Proposed MCL timeline and regulatory deadline is subject to change based on finalization of the National Drinking Water Standard for PFAS.

^{*} Site is a potential candidate for development of a new well supply from the deep aquifer, dependent on on-going water rights evaluation. WS15 is highly likely for SGA development.

Upcoming City Milestones

- Finalize WS 14 design (GAC)
- WS 4 design (GAC or IX??)
- RFQ late 2024 for WS 9
- Pursue sources of PFAS in groundwater
- Funding strategy
- Cost recovery/Settlements
- Ongoing customer outreach and education

