Duff WTP Dynamic Operations Model

May 3, 2024

Agenda

- Introductions
- Duff WTP Introduction
- Problem Statement
- What's a Digital Twin?
- Solution
- Next Steps

INTRODUCTION

Jackson Corley
Digital Solutions Technologist

Joshua Kennedy
Project Manager and Water
Treatment Department Manager

Duff WTP Project Background

Background - Medford Water

 140,000 customers in Medford and surrounding communities

- Two sources:
 - Duff Water Treatment Plant, Rogue River (45 mgd)
 - Big Butte Springs (26.4 mgd)
- Capacity: 71.4 mgd nominal

Background - Duff Water Treatment

History and capacity:

- 1968 15 mgd

- 1964 30 mgd

- 1999 45 mgd

- 2017 65 mgd

Project Goals

Expand from 45 to 65 mgd

Provide 23 mgd seismically resilient capacity

Duff WTP Expansion to 65 MGD

Key Challenges and Opportunities

Digital Twin

Is Every Model a Digital Twin?

Defining a Digital Twin

A digital twin is a dynamic digital representation of real-world entities and their behaviors using models with static and dynamic data that enable insights and interactions to drive actionable and improved outcomes.

Defining a Digital Twin

Two core digital twin focuses: (1) operational/behavioral support and (2) physical/asset representation for construction/utilization optimization

© 2022 by Brown and Caldwell, DHI, and SWAN. ALL RIGHTS RESERVED.

Where to Start?

Physical System

Digital Twin

Data

and

ingestion

integration

Sensing / Control

Data Collection and Sources

Data Integration

Data

Management

Analytics

Data Driven Models

Al. etc.

Hydraulic. biological, etc. (static and dynamic)

User Experience Visualization

Simulation

and Decision

Support Tools

What-if Scenarios

Real-time Performance Dashboards

Augmented

/Virtual Reality

Mobile Alerts

Advanced Automation

Sensors

Pressure, temperature, flow, etc.

Actuators

Hydraulic, electrical, mechanical, etc.

Advanced Monitoring

loT, AMI, edge devices, etc.

Business & Operational

Systems

LIMS, CIS, GIS, CMMS, CAD/BIM, etc

Automation Systems

SCADA, telemetry, etc.

Attributes Spatial

Transactional

Temporal

Machine learning.

Physics Based Models

Actionable Results <

Optimized Performance <

Informed Decisions

The Solution

REPLICA is Jacobs' suite of software for digital twins

- Developed for >20 years
- Capabilities across the project lifecycle
- Built on a foundation of domain knowledge, computational power, data connectivity, and intuitive interfaces

https://www.jacobs.com/insights/digital-twin-technologies

Replica Operations

QJacobs 2

How Was the Replica Model Used?

Transition from Model to Digital Twin

Model Overview - Main Interface

Model Overview – Hydraulics Filter Example

Operator Training Tool Example

Next Steps

Key Challenges and Opportunities

Next Steps

Commissioning
Summer 2025 and
2026

 Train operators on new filter facility (2025) and with new reservoir/FWPS (2026)

Updates to the model

 Incorporate distribution elements to model the entire system

Consider other uses for the tool

Demand projection

Operator Training Case Study

IOOLEBEX ATER COMPANY

Jacobs

CJO Plant Simulation

Extra Slides

Summary of Scenarios

Scenario Number	Description	Historical Flow Date	Total CFE Flow Range	Total FW Flow Range	Purpose
1	Shoulder Season, New	April 14, 2020	17.5 MGD (constant)	14 – 21 MGD	Demonstrate new operation of a shoulder season day flow. Filter flow can be constant while FW flow varies. Only new filters needed.
2	Current Peak Day, Historical	July 22, 2020	36 – 44 MGD	36 – 44 MGD	Demonstrate historical operation of a peak day flow. Filter flow matches FW flow.
3	Current Peak Day, New	July 22, 2020	41.4 MGD (constant)	36 – 44 MGD	Demonstrate new operation of a peak day flow. Filter flow can be constant while FW flow varies.
4	Future Peak Day	NA	67 MGD (constant)	54 – 76 MGD	Demonstrate maximum flow scenario. Filter flow can be constant while FW flow varies. Show impact of backwash while four new filters online.

Model Overview - Controls Filter Example

Start Up Benefits

- Prevent on site re-programming as control strategies have already been tested
- Streamline PID tuning using model provided tuning parameters
- Easily evaluate hydraulics or controls questions that arise during start up

