

Informing Water Treatment Plant Design with Localized Hydraulic Models

Henry Ricca, PE

Agenda

- Importance of Hydraulics in Treatment Plant Design
	- General Overview
	- Flow Distribution
- Practical Examples of Design Decisions Informed by **Hydraulics**
- Q&A

Importance of Hydraulics in Treatment Plant Design

What is a Hydraulic Profile?

Determine headloss as water flows through each process

Establish Hydraulic Grade Lines (HGLs) through the treatment process (water level)

Reasons for Preparing Hydraulic Profiles

- To ensure the hydraulic gradient is adequate for flow through the treatment facility
- To prevent facility overflows during peak flow events
- To establish head requirements for pump design
- To ensure equal flow distribution between processes

Design Flows

- Minimum Flow
	- Consider minimum velocities to be maintained
	- Consider for control valve and pump operation
- Average Flow
	- Sets typical depths and volumes
- Rated Plant Capacity
	- Used to design wall elevations and contain water levels within tanks and channels
	- Consider "worst case" condition
		- Process unit out of service?
		- Peak instantaneous flow?

COMPLETE HYDRAULIC CALCULATIONS FOR ALL PERTINENT FLOW CONDITIONS

Flow Distribution and Control

- Benefits of uniform flow distribution:
	- Best use of available hydraulic capacity
	- Improves process performance and reliability
	- Contributes to consistent compliance with tighter effluent limits
- Symmetry, although helpful, does not ensure proper flow distribution
- Maintaining flow distribution
	- Inducing headloss at points of desired distribution (i.e. orifices/ports, weirs, rate-of-flow controller)

Additional Hydraulic Considerations

Filter HL vs. Time

Hydraulic Overview: Flow Distribution

Flow Distribution - Objectives

• Flow Distribution – 95% distribution to all units

Flow Distribution - Objectives

- Flow Distribution 95% distribution to all units
	- Ease of operation

Flow Distribution - Objectives

- Flow Distribution 95% distribution to all units
	- Expandability

Maintaining Flow Distribution

• Basic Principle – Induce Headloss!

Provide a high enough headloss at points where equal flow distribution is required so that the head differential acting against equal flow distribution is relatively small in comparison.

- Common ways to induce headloss
	- Weirs (splitter boxes, etc.)
	- Ports (distribution from channel to process units)
	- Rate Controllers (valves, etc.)
		- Not always desirable in processes other than filters
		- Additional equipment cost and maintenance required

Flow Distribution

- Orifices
	- Headloss in channel between orifices (dh)
	- Headloss through orifice: 10 x dh

Flow Distribution

• Weirs

- Headloss in channel between weirs (dh)
- Head over weir: 30 x dh

Practical Examples

Example – Williams WTP *Identifying hydraulic capacity of aging WTP*

Example – Williams WTP

Identifying hydraulic capacity of aging WTP

Developed hydraulic model of existing plant with record drawings

• Model calibrated with field measured water elevations

Process	Measured WSE (ft)	Hydraulic Profile WSE (ft)	Model Error (ft)	
Flocculation Basins (West Train)	389.80	389.79	0.01	
Sedimentation Basin (West)	389.68	389.72	0.04	
Sedimentation Basin (East)	389.72	389.72	0.00	
Sedimentation Basin Effluent Channel (West)	389.33	389.30	0.03	
Sedimentation Basin Effluent Channel (East)	389.27	389.27	0.00	
Filter Influent Channel (West)	389.27	389.26	0.01	
Filter Influent Channel (East)	389.20	389.26	0.06	
Filters	388.63	388.63	0.00	

Results of Existing WTP Hydraulic Model Calibration at 6.5 mgd Flow

Example – Williams WTP

Defined freeboard at various flow rates up to permitted capacity of 22 MGD. Red cells mean < 12" freeboard

Flow (mgd)	Filtered Water Collection Box	Filters	Filter Influent Weirs	Sed Basin Effluent Weirs	Sed Basins	Sed Basin Influent Channel	Flocculation Basins	Rapid Mix
8	3.8	2.2	0.4	0.2 ²	1.1	1.0	2.1	2.1
10	3.5	2.2	0.4	0.1 ²	1.1	0.9 ²	2.1	2.1
12	3.2	$2.2\,$	0.3 ²	0.0 ²	1.0	0.8 ²	2.0	2.0
14	2.8	2.2	0.2 ²	-0.12	1.0	0.7 ²	1.9	1.9
22	0.8 ²	2.2	0.0 ²	-0.32	0.9 ²	0.4 ²	1.4	1.4

Existing WTP Model Results - Freeboard¹ Throughout WTP Processes (ft)

¹ Freeboard is defined as the distance between water level and top of concrete or downstream water level and weir elevation.

² Red shaded cells indicate less than 12 inches of freeboard from top of concrete elevation or less than 4 inches of downstream freeboard from the weir elevation.

Example – Williams WTP

Limited freeboard!

Example – Williams WTP

Recommended improvements to remedy hydraulic bottlenecks

- Upsize sedimentation basin influent mud valves
- Remove unnecessary filter influent weirs

Example – Williams WTP

Resulting freeboard predicted by model with recommended improvements

> WTP with Recommended Improvements Model Results - Freeboard¹ Throughout WTP Processes (ft)

¹ Freeboard is defined as the distance between water level and top of concrete or downstream water level downstream and weir elevation.

² Red shaded cells indicate less than 12 inches of freeboard from top of concrete elevation or less than 4 inches of freeboard from weir elevation.

Example – Cooleemee WTP

Replacing aging WTP with greenfield 3.5 MGD WTP

New WTP is up a hill from existing WTP

• Need new raw water (RW) pumps with more TDH to get water from river to plant

Example – Cooleemee WTP

KYPIPE model to develop system curve for new RW pumping system

- Increased static head
- New, larger RW transmission pipeline

Example – Cooleemee WTP

Hazen

Select new pumps to meet design points

- Minimum flow point keep above min. continuous stable flow
- Average flow point want very good efficiency here
- Maximum flow point be able to meet this w/ reasonable efficiency

Example – Cooleemee WTP

How to control flow rate to meet our 1.5 - 3.8 MGD range?

- Control valve *changes system curve*
- Variable Frequency Drives (VFDs) on pumps *changes pump curve*

Example – Sanford WTF Expansion

12 MGD 30 MGD (with future 42 MGD in mind)

- 1. Excel-based hydraulic model of existing plant
- 2. Calibrate model with field measurements
- 3. Expand model to include proposed facilities and higher flow rates

Example – Sanford WTF Expansion

12 MGD 30 MGD (with future 42 MGD in mind)

Sizing for wide range of flows!

- Pipes
- **Channels**
- **Basins**
- Pumps

Ensure solids don't settle out at low flows

Avoid floc shear and excessive headloss at high flows

Example – Sanford WTF Expansion

Example – Sanford WTF Expansion

Flow control valves operate best between 20%-80% open.

Size valves to keep operations in that range for worst-case scenarios

Maximum headloss to induce at filters (closed valve)

Min flow, clean bed, all in service

Minimum headloss to induce at filters (open valve)

Max flow, dirty bed, 2 out of service

