

Long Term Seismic Resilience Master Planning

Negar Niakan, Engineering Division Manager, City of Hillsboro Alena Thurman, Project Manager, Carollo Engineers

JWC Introduction

Infrastructure

OHA Requirements

Level of Service Goals

CIP Development

Long Term Financial Planning

Grants and Funding

Introduction

- Commission partnership
- History

Infrastructure

OHA Requirements

OHA Requirement: OAR 333-061-0060-5(a) (J)

- The Oregon Resilience Plan was developed in 2013.
- Provides the state's road map for earthquake preparedness.
- Goals:
- 1. Identify critical infrastructure needed to supply water during an emergency
- Identify projects to be completed in the next 50 years to ensure that piped water can be provided in the event of a strong earthquake

- Every community water system with more than 300 connections.
- For Master Plans submitted after January 10, 2018.
- Required to conduct a seismic risk assessment and mitigation plan.

Level of Service Goals

JWC Seismic Resilience Level of Service Goals

Seismic Event	Proposed Immediate Capacity Goal (MGD)	Proposed Short Term Capacity Goal (MGD)	Short Term Restoration Time Goal (Days)				
72-year Event (Local)	42 (ADD)	42 (ADD)	0				
475-year Event (CSZ)	0	28 (WADD)	1				
2,475-year event (MCE)	0	14 (1/2 WADD) 28 (WADD) 42 (ADD)	3 7 to 14 60 to 90				

Notes:

- MGD Million Gallons Per Day
- ADD Average Daily Demand
- WADD Winter Ave Daily Demand
- 72-year event: a local fault event (50% chance in 50 years)
- 475-year event: Cascadia Subduction Zone (CSZ) earthquake (10% chance in 50 years)
- 2,475-year event: Maximum Considered Event (MCE) (2% chance in 50 years)

Expected Water Systems Conditions Following Seismic Events

JWC WTP Capacity following Seismic Events – Existing Conditions	
---	--

WTP Capacity	72-year event (Local)	475-year event (CSZ)	2,475-year event (MCE)			
	0 MGD for 7 days	0 MGD for 3 weeks	0 MGD for 3 weeks			
	20 MGD for 7 weeks	5 MGD for 6 months	5 MGD for 6 months			
	40 MGD for 18 weeks	40 MGD for 6 months	40 MGD for 6 months			

Notes:

- 72-year is based on a local fault event (50% chance in 50 years)
- 475-year event is based on a Cascadia Subduction Zone (CSZ) earthquake (10% chance in 50 years)
- 2,475-year (2% chance in 50 years) Maximum Considered Event (MCE)

CIP Development

Transmission system seismic evaluation identified highhazard areas for further evaluation

WTP evaluation focused on chlorine gas replacement

Replacement Options:

- 1. Bulk Hypochlorite
- 2. Full On-site Hypochlorite Generation (OSHG)
- 3. Bulk Hypochlorite with Backup OSHG
- 4. Bulk Hypochlorite with Future OSHG

Affordable near-term solution is bulk hypochlorite, long-term goal is OSHG

Safety Resilience and Reliability Water Quality

Environmental / Land Use Permitting Constructability O&M

To address supply resilience, compared 3 possible intake sites

Property 2 found to be most advantageous for JWC

Long-term project due to estimated cost of \$25M to \$35M

WTP Seismic Upgrades

- Replacing WTP facilities with seismic resilient facilities:
 - Rapid Mix
 - Ops Building
 - Clearwell
 - Floc/Sed Basins
 - Filters 1-14
- Finished Water Pump Station 2 Seismic Improvements.

Hazard mitigation study recommended

- Consider regional resilient supplies and needs.
- Develop emergency water supply strategy to be implemented before long-term resilience investments are made.
- Assess seismic resilience of Fern Hill Reservoirs.

COLUMBIA

ASHINGTON

PORTLAND

CLARK

MULTNOMAH

CLACKAMAS

DISASTER

REDNESS ORGANIZATION

IONAL

Willamette Water Supply Our Reliable Water Future

TUALATIN VALLEY

UNIFIED. PREPARED. RESILIENT

PROJECTS

() Hillsborg

www.OurReliableWater.org

Used a risk framework to prioritize the CIP

Project Drivers (Benefits):

- Capacity
- 0&M
- Life Safety
- Water quality
- Condition
- Resilience

Project benefit may be ranked by calculating risk Rist

Consequence of Failure

RISK = Likelihood × Consequence

Likelihood of Failure

Priority of resilience Projects

- 1. Emergency Supply Planning
- 2. Chlorine Gas Replacement
- 3. Geotechnical and Pipeline Analyses
- 4. WTP Seismic Upgrades
- 5. Transmission System Upgrades
- 6. New Intake

Long Term Financial Planning

Feedback Received

- Seismic improvements are expensive, and improvements need to be timed to meet financial planning needs.
- Risks associated with the liquifiable soils.
- A long-term (40-year) seismic resilient CIP.
- Mitigation plan in short-term.

CIP Summary

Capital Improvement Plan Summary by Project Category												
	Total CIP Cost		CIP Phasing									
Project Category			Phase 1		Phase 2		Phase 3		Phase 4			
		Esumate		(FY2024-2028)		(FY2029-2033)		(FY2034-2043)		(FY2044-2063)		
Total Cost	\$	275,419,000	\$	23,490,000	\$	18,141,000	\$	92,805,000	\$	140,983,000		
Land	\$	1,000,000	\$	1,000,000	\$	-	\$	-	\$	-		
Treatment Facilities	\$	201,697,000	\$	15,019,000	\$	3,190,000	\$	72,505,000	\$	110,983,000		
Transmission Lines	\$	67,770,000	\$	4,376,000	\$	13,094,000	\$	20,300,000	\$	30,000,000		
SCADA	\$	4,952,000	\$	3,095,000	\$	1,857,000	\$	-	\$	-		
Annual Cost	\$	-	\$	4,698,000	\$	3,628,000	\$	9,281,000	\$	7,049,000		

Grants and Funding

Identified likely funding opportunities

Low-interest Loan: WIFIA	() USBOR: Water & Energy Efficiency Grants
Low-interest Loan: Oregon IFA SDWRLF	USBOR: Small-scale Water Efficiency Projects
Legislative Community Project Funding	DOE: Energy Efficiency and Conservation Block Grant Program
FEMA: BRIC	OWRD: Water Project Grants & Loans
FEMA: FMA	OEM: SPIRE
FEMA: HMGP	

Matched eligible projects to funding opportunities

CIP Projects and Funding Opportunities

CIP Project		Î	•••				Ø,	ال م م	Ű¥0,		*
SCADA Program	✓	\checkmark	\checkmark				\checkmark		\checkmark	✓	
15,000-Gallon Diesel Fuel Tank $^{(1)}$	\checkmark	\checkmark	\checkmark								\checkmark
Hazard Mitigation Study	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark					
Replace Chlorine Gas System	\checkmark	\checkmark	\checkmark			\checkmark					
Initiate Study with BOR for $SHPP^{\scriptscriptstyle(2)}$	\checkmark	\checkmark									
Beaverton and TVWD Billing Meters	\checkmark	\checkmark						\checkmark	\checkmark		
Seismic Valves on N-S Intertie and Fern Hill Force Mains/ Replace/Improve Transmission Lines in Critical High- Hazard Areas (20-year CIP) ⁽³⁾	✓	✓	✓	✓		✓					
Hazard Mitigation Implementation	\checkmark	\checkmark	\checkmark			\checkmark					
Replace Rapid Mix Facility/ Replace O&M Building ⁽⁴⁾	\checkmark	\checkmark	\checkmark			\checkmark			\checkmark		
Install OSHG Equipment into Hypo Facility ⁽⁵⁾	\checkmark	\checkmark	✓	\checkmark		\checkmark					
Construct New Chemical Building ⁽⁶⁾	\checkmark	\checkmark	✓	\checkmark		\checkmark			✓		
New Intake or SHPP Upgrade	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					

Applied for FEMA Hazard Mitigation Grant for Chlorine Gas System Replacement Project

- FEMA HMGP funds natural hazard mitigation projects.
 - Must mitigate existing structure.
- Application Process:
 - Submitted preapplication Feb-2022.
 - Submitted full application in June-2022.
 - Supported by Carollo and Stantec.
 - Requirements:
 - Mitigation need, schedule, budget.
 - 2 alternatives & no action alternative.
 - FEMA Benefit-Cost Analysis (BCA) tool.
- Currently responding to RFIs and awaiting final decision.

What is Benefit-Cost Analysis (BCA)?

 Benefit-Cost Analysis (BCA) is the process of quantifying the advantages (benefits) of an action and comparing it to its drawbacks (costs).

Questions?

Adjourn Meeting