Pilot Testing Supports ASR Decision Making

Lee Odell, PE

Water Treatment Technology Lead

Consor Engineers

American Water Works Association
Pacific Northwest Section

ASR Water Quality Issues

Aquifer Storage and Recovery (ASR) WQ Issues

Arsenic Release

Microbial Fate and Transport

Disinfection By Products

Mixing Zones Issues

4

Regulatory Framework

							-
	H		aw NETS	LAW PORTS	LAW	LOV ENDERS	Bull Benefitte
			12	173	174	-	r.
NTT-			11.00				
A Pat		-				-	

State	Washington	Oregon
GW Quality Protection	Ecology WAC 173-200 Antidegradation, Criteria	Water Resource Dept, OAR 690-350, Standards, Treatment Requirements
Drinking Water Treatment	DOH Office of DW Regs	OHA Drinking Water Services Regs
ASR Permitting	Underground Artificial Storage and Recovery Reservoir Permit, DOH Treatment Approval	Limited License for ASR Testing, Water Right, ASR permit

New Water Supplies Being Used for ASR

Stormwater

Industrial and Municipal Reuse

Pilot Testing Case Studies

Beaverton ASR Pilot Testing

Othello ASR Demonstration Project

South Cooper Mountain

Annexed in 2013: 544 acres, 3,500 new homes, 2,200-student high school and future elementary school; approximately 9,000 population

JWC Water Supply System: 75% of summer water Aquifer Storage and Recovery (ASR): 25% summer water

Stormwater to Augment Non-potable Supply

- City partnered with Clean Water Services to conduct a feasibility study with OWRD grant in 2016-2017
- Benefits of the concept:
 - Enhanced groundwater supply
 - Reduced stormwater runoff
 - Increase capacity to stormwater infrastructure

- -- Mitigate flow and temperature issues to local streams
- -- Reduce surface water demand

Project Permitting, Stormwater Quality & Quantity

State Regulatory Agencies

Oregon Water Resources Department (OWRD)

Oregon Health Authority (OHA)

Oregon Department of Environmental Quality (DEQ) OHA

• Verifies that AR meets requirements for drinking water systems, if applicable (OAR 333-061)

OWRD

- Leads permit issuance process
- Verifies that water use is allowed under OWRD rules, sets conditions on use (OAR 690-350)

Limited

License for

Artificial

Recharge

(AR)

DEQ

- Verifies that AR well is authorized by DEQ (1200-U permit) OAR 340-044
- Verifies that Limited License meets water quality requirements (<u>anti-</u> <u>degradation</u>, MCLs, protect human health)

AR 340-040, 340-044

11

Stormwater Quality – Bacteriological, General Chemistry, and Metals COI's

			Concentrations				
Analyte Class	Analyte	Units	n-=	Sterling Park Stormwater Average Concentration	Background Groundwater		
Bacteriological	Total Coliform	MPN/100 mL	25	>2420	< 1		
	Turbidity	NTU	25	9.6	ND		
Gen. Chem.	Nitrate + Nitrite	mg/L	20	0.27	ND		
	Sulfate	mg/L	7	2.99	1.6		
	Manganese	ug/L	8	126	48		
Matala	Iron	ug/L	11	810	110		
Metais –	Aluminum	ug/L	12	215	ND		
	Zinc	ug/L	28	322	22		

Stormwater Quality – Anthropogenic Compound COI's

			Concentrations				
Analyte Class	Analyte	Units	n=	Sterling Park Stormwater Average Concentration	Background Groundwater		
PAHs	Di-n-octylphthalate	ug/L	20	0.85	ND		
	2,4-D	ug/L	9	1.32	ND		
	Paraquat	ug/L	7	2.6	ND		
Pesticides	MCPP-p	ug/L	2	0.26	ND		
	Diuron	ug/L	7	0.08	ND		
	Triclopyr	ug/L	7	0.11	ND		
	PFHxA	ug/L	2	0.0035	ND		
	PFOA	ug/L	2	0.0048	ND		
PFAS/PFOA	Perfluorononanoic acid	ug/L	2	0.0010	ND		
	Perfluorodecanoic acid	ug/L	2	0.0012	ND		
	PFOS	ug/L	2	0.0064	ND		
Petroleum Hydro	Toluene	ug/L	23	0.88	ND		

Stormwater Treatment Pilot/Bench Testing

Water Quality – Bacteriological, General Chemistry, and Metals

NOTE: Table only shows analytes with concentrations in raw stormwater above background in native basalt groundwater

			Concentrations							
Analyte Class	Analyte	Units	Raw Stormwater Pilot Testing	Treated Stormwater Package System A	Treated Stormwater Coagulant/Pressure Filter/GAC B	Treated Stormwater SS/Package/GAC C	Background Groundwater			
Bacteriological	Fecal Coliform	MPN/100 mL	> 2,420	< 1	< 1	< 1	< 1			
Gen. Chem.	Nitrate + Nitrite	mg/L	0.26-0.46	0.32	0.21	0.28	ND			
	Sulfate	mg/L	2.3-3.9	48	19	59	1.6			
	Manganese	ug/L	29-170	130	41	15	48			
Metals -	Iron	ug/L	460-530	250	180	120	110			
	Aluminum	ug/L	140-430	110	1100	330	ND			
	Zinc	ug/L	130-690	29	130	ND	22			

BLUE = Treatment reduces analyte concentration to below background

ORANGE = Treatment reduces analyte concentration, but not to below background

BLACK = Treatment raises analyte concentration, or analyte not significantly affected by treatment

Water Quality – Anthropogenic Compounds

NOTE: Table only shows anthropogenic compounds that were detected in stormwater

				(Concentrations	ations		
Analyte Class	Analyte	Units	Raw Stormwater Pilot Testing	Treated Stormwater Package System A	Treated Stormwater Coagulant/Pressure Filter/GAC B	Treated Stormwater SS/Package/GAC C	Background Groundwater	
PAHs	Di-n-octylphthalate	ug/L	ND-0.85	0.14	ND	ND	ND	
Pesticides	2,4-D	ug/L	1.7-2	0.63	0.14	ND	ND	
	Paraquat	ug/L	ND-2.6	ND	ND	ND	ND	
	MCPP-p	ug/L	0.11-0.6	ND	ND	ND	ND	
	Diuron	ug/L	ND-0.08	ND	ND	ND	ND	
	Triclopyr	ug/L	0.094-0.13	0.087	ND	ND	ND	
	PFHxA	ug/L	0.0027-0.0046	0.0021	0.00355	ND	ND	
	PFOA	ug/L	0.0045-0.0051	0.0031	0.0038	ND	ND	
PFAS/PFOA	Perfluorononanoic acid	ug/L	ND-0.002	ND	ND	ND	ND	
	Perfluorodecanoic acid	ug/L	ND-0.0024	ND	ND	ND	ND	
	PFOS	ug/L	0.0044-0.0093	0.0044	0.0044	ND	ND	
Petroleum Hydro	Toluene	ug/L	ND-0.88	ND	ND	ND	ND	

Sterling Park Stormwater Treatment

Rendering of Sterling Park ASR 3 Pump Station and Stormwater Treatment Facility

Slow Sand Filter

- Seasonal Schmutzdecke
 removal
- 10 Years Replace Media

AQUIP Filter

- Seasonal Media Removal
- 3-6 Years Replace Media

<u>GAC</u>

- Backwash
- Annual Media Replacement

<u>UV</u>

- Monitor Performance
- Bulb Replacement

Chlorination System

- Brine Tank Filling
- Monitor Performance

Water Quality & Instruments

- Monitor Performance
- Periodic Grab Samples

Wells & ASR Valves

consor

Monitor Performance

O&M - Sterling Park ASR 3 Pump Station and Stormwater Treatment Facility

City of Othello Regional Water Supply:

Source Development & ASR

Regional Water Supply Needs

- Groundwater Declining throughout the Columbia Basin
- Ag and Other Users Need Surface Water for Sustainability
- OCR Implementing Source Exchange (Odessa GW Replacement)
- Municipalities Also Impacted by GW Depletion

New Source to Augment Groundwater

Irrigation Canals Have Seasonal Capacity

- 8,500 afy of M&I water available
- Either canal could supply up to 12 MGD (May Oct)
- Water is High Quality
- ASR Extends Benefits to Year-round

Pilot Testing Results

 Table 1. Calculation Variables (P_{test})

Item	Description	Unit	Value
P _{test}	Test pressure for required resolution	psi	17.47
k	Shape correction factor	dimensionless	1
σ	Surface tension of water @ 5 °C	dynes/cm	74.97
θ	Water contact angle of membrane medium	degree	0.00
BP _{max}	Sum of backpressure and static head	psid	3.00

Since the testing pressure to be used is 25 psi or above and the pressure decay is anticipated lower than 1 psi during the duration of the test for Pall MF system, the resolution criterion is satisfied.

Membrane Removal LRV >4 for 3- micron and Larger in Daily Calculations

Direct Integrity Test – All Passed

Summary Water Quality Sampling

 Table 1 - Water Quality Results for Groundwater, Treated Recharge, and Storage

 Project #140207 - City of Othello ASR Phase 2 Pilot Testing

		Ambient Well 8	Treated Recharge	Storage		
Analyte Group	Parameter (unit)	5/10/2021	10/19/2021	4/5/2022	MCL / SMCL	Groundwater Standard (WAC 173-200)
	Aluminum (ug/L)	4.5	4.2	7.6	200	
	Antimony (ug/L)	<0.050	0.118	0.066	6	
	Arsenic (ug/L)	0.61	0.74	<0.50	10	0.05
	Barium (ug/L)	21.5	32.8	27.1	2000	1000
	Beryllium (ug/L)	<0.020	<0.020	<0.020	4	
	Cadmium (ug/L)	<0.020	<0.020	<0.020	5	10
	Calcium (mg/l)	2.49	20.0	7.7		
ú	Chromium (ug/L)	<0.20	<0.20	0.2	100	50
als	Copper (ug/L)	51.50	3.01	1.20	1300	1000
let	Iron (ug/L)	57	3.5	30.4	300	300
Σ	Lead (ug/L)	1.970	0.167	0.793	15	50
a	Magnesium (mg/l)	0.86	4.66	2.31		
ō	Manganese (ug/L)	10.6	0.78	7.37	50	50
F	Mercury (ug/L)	<0.20	<0.20	<0.20	2	2
	Nickel (ug/L)	<0.20	<0.20	<0.20		
	Potassium (mg/l)	13.1	0.83	10.50		
	Selenium (ug/L)	<1.0	<1.0	<1.0	50	10
	Silica (mg/l as SiO2)	61.1	4.6	41.6		
	Silver (ug/L)	<0.020	<0.020	<0.020	100	50
	Sodium (mg/l)	75.5	2.19	54.10		
	Thallium (ug/L)	<0.020	<0.020	<0.020	2	

Summary of Water Quality

 Table 1 - Water Quality Results for Groundwater, Treated Recharge, and Storage

 Devicet #140007
 Other ASB Device 2 Dilet Testing

Project #140207 - City of Othello ASR Phase 2 Pilot Testing

		Ambient Well 8	Treated Recharge	Storage		0
Analyte Group	Parameter (unit)	5/10/2021	10/19/2021	4/5/2022	MCL / SMCL	Groundwater Standard (WAC 173-200)
	Alkalinity (mg/I CaCO3)	138	64.2	116 ¹		
	Bicarbonate (mg/l)	132	64	113 ¹		
<u>s</u>	Bromide (mg/L)	0.15	<0.10	<0.10 ¹		
na	Chloride (mg/l)	12.300	1.00	9.83 ¹	250	250
<u>.</u>	Fluoride (mg/l)	2.54	<0.20	1.3 ¹	4	4
nt	Nitrate/Nitrite (mg/l as N)	<0.050	<0.050	< 0.050 ¹	10	10
ve	Phosphorus (mg/l as P)	0.047	<0.020	0.027 ¹		
uo	Sulfate (mg/l)	29.00	9.79	24.1 ¹	250	250
Ŭ	Total Organic Carbon (mg/L)	0.60	1.30	0.6 ¹		
	Total Suspended Solids (mg/L)	36	<5.0	7.5 ¹		
	Total dissolved solids (mg/l)	271	77.3	209 ¹	500	
	Dissolved Oxygen	6.49	10.74	2.41		
Field	pH (std units)	8.09	7.45	8.32		
Darameters	Specific conductance (uS/cm @25C)	556	243.1	160	700	
Farameters	Temperature, water (deg C)	24.4	11.7	20.7		
	Turbidity (NTU)	3.73	1.03			
Bactoria	E. Coli	ABSENT	ABSENT	ABSENT ²	1	
Bacteria	Total Coliform	ABSENT	ABSENT	PRESENT ²		1

Notes:

mg/l = milligrams per liter

ug/L = micrograms per liter

MCL = maximum contaminant level

SMCL = secondary maximum contaminant level

Results reported to Reporting Detection Limit (RDL)

Bold font indicates results exceeding MCL/SMCL

Italic font indicates results exceeding WAC 273-200 Groundwater Standard

1 Results from most recent sample not yet available. Those shown are from 3/8/2022

²Bacteria not reanalyzed since 11/17 at beginning of storage. City will resample for coliforms before well startup

27

Sampling Results

VOC Analyte List

No SVOCs,VOCs, Herbicides, or Pesticides Detected During Pilot Test

Table 2. Summary of Bacteria Monitoring Results

Project #140207 - City of Othello Phase 2 Pilot Testing

City of Othello ASR Demonstration-Scale Test: Summary of Bacteria Monitoring

	Raw V	/ater	Treated Water		Well 8				
Sample Date	Total Coliform	E. Coli	Total Coliform	E. Coli	Total Coliform	E. Coli			
		P	re-Recharge (backgrou	ind)					
5/10/2021					Present	Absent			
	Recharge								
5/12/2021 ¹	Present	Present	Absent	Absent		-			
5/17/2021			<1 MPN/100mL	<1 MPN/100mL					
5/25/2021			Absent	Absent		-			
6/10/2021	Present	Present	Absent	Absent		-			
7/6/2021			Absent	Absent		-			
8/10/2021	488 MPN/100 mL ²	8.5 MPN/100 mL				-			
8/19/2021	Present	Present	Absent	Absent		-			
10/19/2021	Present	Present	Absent	Absent		-			
			Storage Phase						
11/16/2021					Present	Absent			
11/29/2021				-	Absent	Absent			
2/8/2022					Absent	Absent			
5/3/2022					<1 MPN/100mL	<1 MPN/100mL			
7/20/2022					<1 MPN/100mL	<1 MPN/100mL			
Recovery Phase									
7/13/2023					Absent	Absent			
7/13/2023					Absent	Absent			
7/13/2023					<5 MPN/100mL	<5 MPN/100mL			

DRAFT

Samples collected in advance of initiating full-scale recharge. Treated sample collected on 5/13/21
 Count is for Fecal Coliform

Othello Water Quality Challenges

OTHELLO RAW WATER TURBIDITY, NTU 100 NTU

- Wind Causes Large Turbidity Spikes
- Potential Algae in Canals
- Potential for Spills

DATE AND TIME

Predesign - 2024

Lee Odell, PE Lee.odell@consoreng.com

Thank you

ASR Arsenic Release

Arsenic release occurred in Cycle 1 in ASR well, subsequent cycles did not show release. Arsenic concentrations in 1,100' monitoring well showed attenuation during storage period Attenuation trends occurred in Cycles 3 and 4

ASR Microbial Fate and Transport (Joan B. Rose and David E. Johns, University of South Florida, 2002)

33

ASR Disinfection By-Products

Water Research Foundation, Aquifer Storage and Recovery of Treated Drinking Water, 1996 Results shown for Centennial Water and Sewer District, CO

Disinfection Byproduct Reduction: Centennial WSD, Denver, CO

Early studies showed attenuation of DBPs

Reduction of THMs may take significant amounts of time and certainly varies from place to place

More of a concern for single injection/recovery systems with Short Storage periods ASR Disinfection By Products -Jason Pulley, City of Salem, THM Concentrations and Cumulative Storage Volume

ASR – Disinfection By Products City of Yakima ASR Project – Chris Pitrie,, 2013 PNWS AWWA Conference

ASR Mixing Zone Requirements Larry Eaton & Jason Melady,, City of Cornelius ASR Project, 2015

37