Reclaimed Water Disinfection Challenges and Solutions at Brightwater PNWS AWWA Conference

May 3, 2024

Key Takeaways

Reclaimed Water Distribution Challenges

Chloramination Benefits/Challenges

How Pathogen Crediting for MBRs Can Impact Disinfection

Acknowledgements

Agenda

Brightwater Treatment Plant

King County Wastewater Treatment Division

- Serves ~1.6 million residents
- 5 regional WWTPs
- Brightwater
 - Woodinville, WA
 - Membrane bioreactor (MBR) process
 - Completed 2011/2012
 - Capacity:
 - Average Monthly Flow 30 MGD
 - Peak Hourly Flow 44 MGD

Process Flow Diagram

Reclaimed Water Disinfection & Distribution

- 3-mile pipeline contactor for disinfection
- 5 miles from compliance point to customers
- Need to maintain chlorine residual within a range of 0.5 to 4.5 mg/L

Number of RW System Outages Per Years

Years

Causes of Outages

Solutions Mapping

Recommended Solution

Agenda

Chloramine Disinfection Approach

Monochloramine Benefits – More Durable Residual

Free Chlorine

Monochloramine

Monochloramine Benefits – Use Less Chlorine

Free Chlorine

Monochloramine

Chloramine Disinfection Challenges

WAC 173-219-340 requires:

All Class A reclaimed water generation disinfection processes must, in combination with treatment processes following biological oxidation, result in a minimum **4-log virus removal** or inactivation.

Chloramine Disinfection Challenges

Disinfectant	Unit	1-log Inactivation	2-log Inactivation	3-log Inactivation	4-log Inactivation	
Bacteria						
Chlorine (free)	mg*min/L	0.1-0.2	0.4-0.8	1.5-3	10-12	
Chloramine	mg*min/L	4-6	12-20	30-75	200-250	
UV	mJ/cm ²	-	30-60	60-80	80-100	
Virus						
Chlorine (free)	mg*min/L	-	2.5-3.5	4-5	6-7	
Chloramine	mg*min/L	-	300-400	500-800	200-1200	
UV	mJ/cm ²	-	20-30	50-60	70-90	
Protozoan Cysts						
Chlorine (free)	mg*min/L	20-30	35-45	70-80	-	
Chloramine	mg*min/L	400-650	700-1000	1100-2000	-	
UV	mJ/cm ²	5-10	10-15	15-25	-	

Metcalf & Eddy, *Wastewater Treatment & Reuse*, 4th Ed.

Strategy to Achieve 4-Log with Chloramine – Alternative 1

Strategy to Achieve 4-Log with Chloramine – Alternative 2

Agenda

Pathogen Removal with MBR

MBR Virus Removal Credit

- WA DOE Orange Book allows 1.0 LRV credit for MBRs
- Permittees may petition to review and revise determination
- Per NWRI, lower dose quidelines for UV disinfection systems following MBR

THIRD EDITION

MBR Virus Removal Credit

- Water Research Foundation
 Project Report
- Tier 1: Conservative 1.0 LRV for virus
 - Turbidity operating limits
- Tier 2: Challenge Testing
 - Demonstrate higher LRVs at specific facilities
 - Ongoing monitoring
 - Turbidity operating limits
 - Secondary integrity monitoring

MBR Tier 2 Challenge Testing Scope

- Twenty-four feed/filtrate samples
- Extended sampling period
- Analysis
 - Bacteriophage (indicators)
 - Pathogens
 - Turbidity
 - Secondary surrogate
- Anticipated LRV 3.5 to 4.5

Tier 2 Validations at Locations in California

- Los Angeles County Sanitation District w/ Metropolitan Water District
 - Carson JWPCP Advanced Water Purification Center
 - Focused on protozoa reduction, >4 LRV
- City of LA Hyperion Water Reclamation Plant
 - 1 mgd MBR demo facility
 - Focused on both protozoa and virus validation testing

Tier 2 Validation Case Study – Lake of the Pines WWTP

- Auburn, California (Kubota System)
- Using flat sheet, MF membranes for MBR
- 10-year-old membranes
- NO membrane replacements!

Tier 2 Validation Case Study – Lake of the Pines WWTP

LRV Probability Density Function

Brightwater MBR Exploratory Testing - Scope & Goals

- Limited sampling effort to inform the potential success
- Not seeking regulatory approval (yet)
- Include chloramination virus removal bench-top study

Brightwater MBR Exploratory Testing – Sampling Locations

OFN

MBR Operational Performance During Sampling

- Compiled MBR performance data for three months preceding sampling and during sampling
- MBR operating normally during sampling period
- Higher TMP and Flux on one sample day (+4 gfd and +0.3 psi)

Brightwater MBR Exploratory Testing – Results

- Indicator organisms
 LRV 3.4 to > 4.0
- Enterovirus LRV 3.3
- Meets and exceeds
 previous MBR work

MBR Integrity Monitoring Data

- Rarely exceeded
 0.2 NTU
- Typically very low on individual filtrates and always low at the combined filtrate turbidity compliance point.

Brightwater MBR Exploratory Testing – Results Secondary Integrity Monitoring

- Filtrate Total Coliform ranged from 1 to 25 CFU/100 mL
- No apparent trend between total coliform and indicator LRV

Chloramination Results CT – MS2 Data

- LRVs of MS2 > 1.0 log units reliably achieved at CTs > 255 mg-min/L.
- LRVs of MS2 > 0.6 log units reliably achieved at CTs >115 mg-min/L.

Brightwater MBR Exploratory Testing Results Review

- Indicator organisms LRV >3.4
- Pathogen LRV 3.3
- Chloramination provides 0.6 to 1 LRV of MS2 at 115 255 mg-min/L

Brightwater MBR Challenge Testing Next Steps

MBR Tier 2 Challenge Testing Schedule

MBR Virus Removal Credit – Disinfection Process Impact

	NO CREDIT	CREDIT	CREDIT
Disinfection Process	Full Dose UV System + Chloramination	Reduced Dose UV System + Chloramination	Chloramination
New Facilities	\$\$\$\$	\$\$\$	\$\$
Energy	++++	+++	+
Maintenance	+++	+++	+

Key Takeaways

Distribution residual control

Residual durability/variability Virus LRV

LRV crediting may reduce downstream disinfection requirements

David Seymour Alison Payauys <u>DavidSeymour@KennedyJenks.com</u> <u>APayauys@Carollo.com</u>

