Willamette Water Supply Our Reliable Water

Seismic Design Alternative for Ductile Iron Boltless Segment Pipe Joints to Address Schedule Issues and Improve Installation Flexibility

Mike Britch, P.E., MPA - WWSP/TVWD Brian Van Vleet- Sundt May 2, 2024

Ductile Iron Pipe Procedures based on What was Learned from Welded Steel Pipe Seismic Design

Ductile Iron Pipe Procedures based on What was Learned from Welded Steel Pipe Seismic Design

Calculations for Pipe Slippage

Outline

- How It All Fits Together
- Calculation Procedure Approach 1

Transmission Lines

- Calculation Procedure Approach 2
 - Sub-transmission Mains
 (Alternative for Ductile Iron Boltless Segment Pipe Joints)
- How Approach 2 was Implemented during Construction for the WWSP Water Treatment Plant Project

Turkey 2023 M 7.8 Increasing Earthquake Awareness

Higher Seismic Performance Products Available

"Manual of Practice on Seismic Design of Buried Water/ Wastewater Pipelines" ongoing

Upcoming new Chapter 13, "Seismic Guidelines for Ductile Iron Pipe"

New Documents Coming to the Industry

Paper on these procedures to be presented at the ASCE Pipelines Conference (Britch, 2024)

PIPELINES CONFERENCECalgary, AlbertaJuly 27-31, 2024

Seismic Design Approach for Ductile Iron Pipe Including Alternative to Boltless Segm Joints

WWSP Engineering and Construction Manager, Tualatin Valley Water District, Beaverton, O nail: mike britch@rtvwd.org

Seturms juint performance for dextle into gree (JDP) products has one significant advancements in recorrect area easies the inhibit procedures to existing the manumer negative DP entities and processing the seture of the seture of the seture of the seture existing the seture of the seture of the seture of the seture of the seture WCMP endows ever PM moles of large datasets are not measurements in the situation of the WCMP endows ever PM moles of large datasets are not measurements in the situation of the seture seture of the set

TRODUCTION

Detection on prior has a long binary of providing high scientify performance when approperingly sequences. These are severed additional for the making related is addressing the goal. Many products have been detected on all results of the making related is addressing the science of the scien

What's needed are Practical Ductile Iron Pipe Seismic Calculation Procedures

How It All Fits Together

Focus of this presentation	Category	Description	Design Approach
 Level of Criticality of Pipe Systems Several systems of pipe classifications have been proposed (ASCE, 2018; OSSAP, 2013; JWWA, 1997). The proposed classification system presented most closely follows that by ASCE (2018) 	Transmission Line Sub- Transmission Main Distribution	These are typically the largest diameter pipe sections within an overall pipe network that provide flow from the source locations to key points of distribution. This category generally includes connections from key points of transmission to critical functional points of distribution including critical resilient pipe grids within an overall pipe network. Lowest level of potable water system	Highest level approach with site specific ground motion parameters. Similar to above, but adaptation for flexibility of installation and the use of many fittings of varying nature. Use restrained joints
and uses the terms <i>transmission line</i> and <i>sub-transmission main</i>		that comprises the largest and typically smallest diameter portions of the pipe network and serves the lowest level of customer criticality.	consistent with area specific seismic hazard.
Illamette Water Supply	Non-Critical	Non-critical supply where service can be interrupted for long periods.	Owner driven approach based on perceived value.

How It All Fits Together

Seismic Behavior of Joints

- "Continuous Pipes" like welded steel pipe (WSP) with welded joints and HDPE
- "Segmented Pipes" like ductile iron pipe and other push-on pipe joint pipe materials

Ductile Iron Pipe Joint Classification

Classification	Description	Relative Joint Seismic	
		Performance	
Tvpe IV	Special seismically designed joints	High to very high	
Type III	Joints with boltless segments	Moderate to very high	
Type II	Joints with gripping wedges	Moderate	
Type I	Push-on unrestrained joints	Low (no pull-out resistance)	

Focus of this presentation

Upcoming new Chapter 13, "Seismic Guidelines for Ductile Iron Pipe"

Willamette Water Supply System DIP Case Studies

New seismic design approaches needed due to issues associated with ductile iron pipe:

- Schedule/supply chain issues
- Constructability
- Varying construction schedules and necessary changes to approach
- Schedule impacts to on-time startup of the WWSS

Tualatin Valley Water District

Sherwood

Will onville

Beaverto

48" DIP Case Study Area:
 Approximately 3 miles of DIP alternative to WSP (MPE_1.3)

RES_1.0 Case Study Area:

Several thousand feet of4" to 12" Ductile Iron Pipe

WTP_1.0 Case Study Area:
Approximately~\$8M 4" to 24" Ductile Iron Pipe

Bull

Run

River

Source: Britch (2023)

"Necessity is the mother of invention" (quote attributed to Plato)

Image from the Regional Water Providers Consortium

Transmission Lines

DUCTILE IRON PIPE SEISMIC CALCULATION PROCEDURE APPROACH 1

Approach 1 – DIP Transmission Lines

Design Approach 1 (Applies to joints with highest axial loads, e.g. near bends)				
Step 1 – Calculate Restrained Length	Follow DIPRA (2016) procedure to calculate the restrained length using the test pressure.	$L = \frac{S_f P A \tan\left(\frac{\theta}{2}\right)}{F_f + \frac{1}{2}R_s}$		
Step 2 – Calculate Axial Load from Thrust	This is done by multiplying the test pressure with the internal cross-sectional area of the pipe.	P _{test} x A		
Step 3 – Calculate Load from Ground Strain	When the pipe is installed near bends, joints near the bend should be fully pulled during installation to resist the thrust at the bend (assuming thrust block not used).	$\varepsilon = \frac{PGV_{S1}}{2c_s}$ Resulting stress x A _p gives load		
Step 4 – Calculate Axial Load from Slippage	Use procedures described by Elhmadi and O'Rourke (1989) to calculate the ultimate axial force per unit length of pipe.	$f_x^u = \mu_s \gamma H \frac{(1+K_o)}{2} \pi D$ Applied to actual restrained length		
Step 5 – Calculate the Minimum Required Joint Strength	Use the lower of the two values calculated from Steps 3 and 4 will be used (per ASCE, 1984).	Load from Step 2 + lower value of load derived from Steps 3 or 4		
Step 6 – Determine Strain Relief Needed at End of Restrained Length Section of Pipe	The amount of additional tensile relief needed is calculated using the ground strain multiplied by the actual installed length of restrained pipe.	Include appropriate factor of safety		

48" MPE Ductile Iron Pipe Example

MPE_1.3 Example:

- 48" Class 52 Ductile Iron Pipe
- Test Pressure 230 psi and 90-degree bend
- Site Class E Soils, $\varepsilon_g = 0.000587$ in/in (Method 2)

Joints pulled for thrust restraint near bend make pipe behave like "continuous" pipe with additional tensile load from ground strain

Sub-transmission Mains (Alternative for Ductile Iron Boltless Segment Pipe Joints)

DUCTILE IRON PIPE SEISMIC CALCULATION PROCEDURE APPROACH 2

New RES_1.0 & WTP_1.0 DIP Seismic Design Approach

 New approach thinking started about a year ago as a "back of the notebook" series of thoughts and preliminary calcs (5/10/2023)

"Don't let the perfect be the enemy of the good" *Voltaire (1694 – 1778)*

Starts by Understanding Pipe Performance Limits

New RES_1.0 & WTP_1.0 DIP Seismic Design Approach

New Approach

- Provides installation flexibility (i.e. improves constructability)
- Works with available ductile iron products you can get
- Works with tensile strength performance limits associated with different types of available ductile iron pipe joints

lamette Water Supply

Working around limitations associated with capacity of joints with gripping wedges

Source: "Behavior of Underground Piping Joints Due to Static and Dynamic Loading" (Meis et al., 2003)						
Analysis base	Analysis based on "Table 2-1 Test Reults Summary for Static Axial Loading"					
Table 14.x2 C	omparison of	f DIP Gripper Gasket,	Bolted Collar,	and Retain	ing Ring Tensile Loading	Results
	Pipe				Comparison of Loading	
Size	Material	Joint Type	Loading	F _{max} (kN)	Results	Comments on Joint Failure
6" (150 mm)	ductile iron	bell-spigot, gripper	tension	253		ultimate failure of metal teeth in
8" (200 mm)		gasket		539		gasket
12" (300 mm)				488		
6" (150 mm)		bell-spigot,		538	2.13 x gripper gasket	ul mate failure in bell end at
8" (200 mm)		retaining ring joint		795	1.47 x gripper gasket	retaining ring groove
12" (300 mm)				750	1.54 x gripper gasket	
6" (150 mm)		bell-spigot, bolted		195	0.771 x gripper gasket	
8" (200 mm)		collar		280	0.519 x gripper gasket	fracture at collar wedge screw holes

Boltless segment style joint has approx. twice the tensile capacity of joints with gripping wedges

Source: Britch (2023)

DIP Alternative to Boltless Segments for Seismic Design

DIP Alternative to Boltless Segments for Seismic Design

Approach 2 – DIP Sub-transmission Mains Summary

Procedure Element	Description	Comments	
First Part	Check for minimum factor of safety of 2 required for MEGALUG [®] based on pipe max working pressure	Assumes Category 3 DIP joints have approximately twice the tensile capacity of Category 2 DIP joints	Example: PLW_1.2 18" Turnout
Second Part	Check to see the maximum distance between boltless segment joints that contain MEGALUGs [®] between them doesn't exceed 20 ft	Where restrained length exceeds 10 ft on either side of fitting with mechanical joints, tandem MEGALUGs [®] required	Want the section of pipe with the fitting to behave like other 20 ft sections of pipe
Third Part	Check to see if restrained length of pipe, L _R , each side of joint is adequate from fitting joint to first boltless segment joint to resist loads		Example: RES_1.0 12" 90° bend (P _{Test} 225 psi)
Step 1	Evaluate thrust force and resistance loads for MEGALUG [®] requirements	Starting by using smallest L ₁	Results in the smallest passive soil resistance
Step 2	Evaluate slippage force total axial loads for MEGALUG [®] requirements	Include thrust vector force in direction of pipeline under consideration	Example: WTP deep pipes
Step 3	Evaluate transient ground shaking strain required to provide axial strain relief	Use Method 2 strain calculation procedure for Transmission and Sub- Transmission pipelines (Britch, 2022b)	Typically nominal, except with long "restrained length" sections of pipe

HOW APPROACH 2 WAS IMPLEMENTED DURING CONSTRUCTION FOR THE WWSP WATER TREATMENT PLANT PROJECT

HOW DO WE BUILD IT?

APPROACH

- CONTRACTOR & ENGINEER
 WORKSHOPS
- QUANTITY TAKEOFFS
- PROCUREMENT
- VDC (VIRTUAL DESIGN CONSTRUCTION)
- SCHEDULE & SEQUENCE REVIEW
- INSTALLATION
- WASTE MANAGEMENT

ENGINEER & CONTRACTOR WORKSHOPS

- IDENTIFY COMPONENTS
- IDENTIFY CONSTRAINTS
- REVIEW AVAILABLE PRODUCTS
- REVIEW PRODUCT LEAD TIME

QUANTITY TAKEOFFS

Utilized Bluebeam

- Complete Process Pipe Takeoff
- Complete Potable & Non-Potable Takeoff
- Selected Probable Makeup Locations
- Quantified Extra Pipe Required to Meet TR Flex Joint Detail

PROCUREMENT

- SOLICITED THREE VENDORS
- ENTIRE PROJECT PROCURED IN ONE ORDER
- OVER 19,000 FEET OF DI PIPE 4" 24"
- DIRECT SHIPMENT FROM MANUFACTURE TO JOBSITE
- IDENTIFY EXTRA QUANTITIES NEEDED TO FACILITATE FIELD CHANGES

VDC (VIRTUAL DESIGN CONSTRUCTION)

VDC Process

- Produce shop drawings for all alignments.
- WWSP & EOR Review to identify need for additional seismic resiliency requirements, i.e. tandem mega lugs as well as compliance with contract documents.
- Final shop drawing produced and issued for construction.

Schedule & Sequence Review

- Verify start and stop locations shown in shop drawings are consistent with CPM schedule.
- Verify that makeup locations shown in shop drawings are adequate. 26

CONSTRUCTION

Installation

- TR Flex Joints installed in neutral position.
- Flex 900 & IFK assemblies prebuilt & hydro tested above ground.
- Correlating seismic and cathodic requirements

Waste Management

- Several sticks of pipe could be wasted with this method if not properly managed, i.e. cutting pipe to use just the proprietary bell and or spigot.
- Cut pipe can be reused, this process can be maximized with a solid VDC effort and organized staging.

Questions

Mike Britch, P.E., MPA Engineering and Construction Manager Willamette Water Supply Program mike.britch@tvwd.org

Brian Van Vleet Sundt Senior Project Manager WWSP Water Treatment Plant brvanvleet@sundt.com info@ourreliablewater.org www.ourreliablewater.org

